

MELSERVO

Servo Amplifiers and Motors

Instruction Manual

MR-J2S-□A

Safety Instructions ●

(Always read these instructions before using the equipment.)

Do not attempt to install, operate, maintain or inspect the servo amplifier and servo motor until you have read through this Instruction Manual, Installation guide, Servo motor Instruction Manual and appended documents carefully and can use the equipment correctly. Do not use the servo amplifier and servo motor until you have a full knowledge of the equipment, safety information and instructions.

In this Instruction Manual, the safety instruction levels are classified into "WARNING" and "CAUTION".

Indicates that incorrect handling may cause hazardous conditions, resulting in death or severe injury.

Indicates that incorrect handling may cause hazardous conditions, resulting in medium or slight injury to personnel or may cause physical damage.

Note that the CAUTION level may lead to a serious consequence according to conditions. Please follow the instructions of both levels because they are important to personnel safety.

What must not be done and what must be done are indicated by the following diagrammatic symbols:

): Indicates what must not be done. For example, "No Fire" is indicated by 🕟 .

: Indicates what must be done. For example, grounding is indicated by 😃

In this Instruction Manual, instructions at a lower level than the above, instructions for other functions, and so on are classified into "POINT".

After reading this installation guide, always keep it accessible to the operator.

1. To prevent electric shock, note the following:

M WARNING

- Before wiring or inspection, switch power off and wait for more than 10 minutes. Then, confirm the voltage is safe with voltage tester. Otherwise, you may get an electric shock.
- Connect the servo amplifier and servo motor to ground.
- Any person who is involved in wiring and inspection should be fully competent to do the work.
- Do not attempt to wire the servo amplifier and servo motor until they have been installed. Otherwise, you may get an electric shock.
- Operate the switches with dry hand to prevent an electric shock.
- The cables should not be damaged, stressed, loaded, or pinched. Otherwise, you may get an electric shock.
- 2. To prevent fire, note the following:

⚠ CAUTION

- Do not install the servo amplifier, servo motor and regenerative brake resistor on or near combustibles. Otherwise a fire may cause.
- When the servo amplifier has become faulty, switch off the main servo amplifier power side. Continuous flow of a large current may cause a fire.
- When a regenerative brake resistor is used, use an alarm signal to switch main power off. Otherwise, a regenerative brake transistor fault or the like may overheat the regenerative brake resistor, causing a fire.
- 3. To prevent injury, note the follow

- Only the voltage specified in the Instruction Manual should be applied to each terminal, Otherwise, a burst, damage, etc. may occur.
- Connect the terminals correctly to prevent a burst, damage, etc.
- Ensure that polarity (+, -) is correct. Otherwise, a burst, damage, etc. may occur.
- During power-on or for some time after power-off, do not touch or close a parts (cable etc.) to the servo amplifier heat sink, regenerative brake resistor, servo motor, etc. Their temperatures may be high and you may get burnt or a parts may damaged.

4. Additional instructions

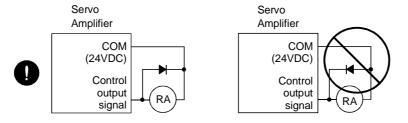
The following instructions should also be fully noted. Incorrect handling may cause a fault, injury, electric shock, etc.

(1) Transportation and installation

⚠ CAUTION

- Transport the products correctly according to their weights.
- Stacking in excess of the specified number of products is not allowed.
- Do not carry the motor by the cables, shaft or encoder.
- Do not hold the front cover to transport the controller. The controller may drop.
- Install the servo amplifier in a load-bearing place in accordance with the Instruction Manual.
- Do not climb or stand on servo equipment. Do not put heavy objects on equipment.
- The controller and servo motor must be installed in the specified direction.
- Leave specified clearances between the servo amplifier and control enclosure walls or other equipment.
- Do not install or operate the servo amplifier and servo motor which has been damaged or has any parts missing.
- Provide adequate protection to prevent screws and other conductive matter, oil and other combustible matter from entering the servo amplifier.
- Do not drop or strike servo amplifier or servo motor. Isolate from all impact loads.
- Use the servo amplifier and servo motor under the following environmental conditions:

Environment		Cond	litions			
Environini	eni	Servo amplifier	Servo m	otor		
Ambient	[℃]	0 to +55 (non-freezing)	0 to +40 (non-freezing)			
temperature	[°F]	32 to 131 (non-freezing)	32 to 104 (non-freezing)	32 to 104 (non-freezing)		
Ambient humidity		90%RH or less (non-condensing)	80%RH or less (non-cond	densing)		
Storage	[℃]	-20 to +65 (non-freezing)	-15 to +70 (non-freezing	3)		
temperature	[°F]	-4 to 149 (non-freezing)	5 to 158 (non-freezing)			
Storage humidity		90%RH or less (non-condensing)				
Ambience		Indoors (no direct sunlight) Free from corrosive	gas, flammable gas, oil m	ist, dust and dirt		
Altitude		Max. 1000m (3280 ft) above sea level				
			HC-KFS Series HC-MFS Series HC-UFS13 to 73 HC-SFS81	X • Y : 49		
	[m/s ²]	5.9 or less	HC-SFS53 to 153 HC-RFS Series HC-UFS 72 • 152	FS Series S 72 • 152 S121 • 201 S202 • 352		
			HC-SFS121 • 201 HC-SFS202 • 352 HC-SFS203 • 353 HC-UFS202 to 502			
		HC-SFS301		X:24.5		
Vibration			HC-SFS502 • 702 HC-KFS Series HC-MFS Series HC-UFS 13 to 73	Y: 29.4 X•Y: 161		
	[ft/s²]	19.4 or less	HC-SFS81 HC-SFS52 to 152	X • Y : 80		
			HC-SFS121 • 201 HC-SFS202 • 352 HC-SFS203 • 353 HC-UFS202 to 502	X:80 Y:161		
			HC-SFS301 HC-SFS502 • 702	X:80 Y:96		


⚠ CAUTION

- Securely attach the servo motor to the machine. If attach insecurely, the servo motor may come off during operation.
- The servo motor with reduction gear must be installed in the specified direction to prevent oil leakage.
- For safety of personnel, always cover rotating and moving parts.
- Never hit the servo motor or shaft, especially when coupling the servo motor to the machine. The encoder may become faulty.
- Do not subject the servo motor shaft to more than the permissible load. Otherwise, the shaft may break.
- When the equipment has been stored for an extended period of time, consult Mitsubishi.

(2) Wiring

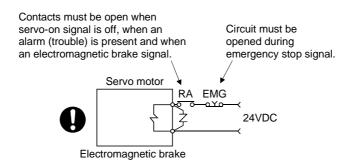
↑ CAUTION

- Wire the equipment correctly and securely. Otherwise, the servo motor may misoperate.
- Do not install a power capacitor, surge absorber or radio noise filter (FR-BIF option) between the servo motor and servo amplifier.
- Connect the output terminals (U, V, W) correctly. Otherwise, the servo motor will operate improperly.
- Do not connect AC power directly to the servo motor. Otherwise, a fault may occur.
- The surge absorbing diode installed on the DC output signal relay must be wired in the specified direction. Otherwise, the emergency stop and other protective circuits may not operate.

(3) Test run adjustment

⚠ CAUTION

- Before operation, check the parameter settings. Improper settings may cause some machines to perform unexpected operation.
- The parameter settings must not be changed excessively. Operation will be insatiable.


⚠ CAUTION

- Provide an external emergency stop circuit to ensure that operation can be stopped and power switched off immediately.
- Any person who is involved in disassembly and repair should be fully competent to do the work.
- Before resetting an alarm, make sure that the run signal is off to prevent an accident. A sudden restart is made if an alarm is reset with the run signal on.
- Do not modify the equipment.
- Use a noise filter, etc. to minimize the influence of electromagnetic interference, which may be caused by electronic equipment used near the servo amplifier.
- Use the servo amplifier with the specified servo motor.
- The electromagnetic brake on the servo motor is designed to hold the motor shaft and should not be used for ordinary braking.
- For such reasons as service life and mechanical structure (e.g. where a ballscrew and the servo motor are coupled via a timing belt), the electromagnetic brake may not hold the motor shaft. To ensure safety, install a stopper on the machine side.

(5) Corrective actions

⚠ CAUTION

- When it is assumed that a hazardous condition may take place at the occur due to a power failure or a product fault, use a servo motor with electromagnetic brake or an external brake mechanism for the purpose of prevention.
- Configure the electromagnetic brake circuit so that it is activated not only by the servo amplifier signals but also by an external emergency stop signal.

- When any alarm has occurred, eliminate its cause, ensure safety, and deactivate the alarm before restarting operation.
- When power is restored after an instantaneous power failure, keep away from the machine because the machine may be restarted suddenly (design the machine so that it is secured against hazard if restarted).

(6) Maintenance, inspection and parts replacement

• With age, the electrolytic capacitor will deteriorate. To prevent a secondary accident due to a fault, it is recommended to replace the electrolytic capacitor every 10 years when used in general environment. Please consult our sales representative.

(7) Disposal

• Dispose of the product as general industrial waste.

(8) General instruction

• To illustrate details, the equipment in the diagrams of this Instruction Manual may have been drawn without covers and safety guards. When the equipment is operated, the covers and safety guards must be installed as specified. Operation must be performed in accordance with this Instruction Manual.

COMPLIANCE WITH EC DIRECTIVES

1. WHAT ARE EC DIRECTIVES?

The EC directives were issued to standardize the regulations of the EU countries and ensure smooth distribution of safety-guaranteed products. In the EU countries, the machinery directive (effective in January, 1995), EMC directive (effective in January, 1996) and low voltage directive (effective in January, 1997) of the EC directives require that products to be sold should meet their fundamental safety requirements and carry the CE marks (CE marking). CE marking applies to machines and equipment into which servo amplifiers have been installed.

(1) EMC directive

The EMC directive applies not to the servo units alone but to servo-incorporated machines and equipment. This requires the EMC filters to be used with the servo-incorporated machines and equipment to comply with the EMC directive. For specific EMC directive conforming methods, refer to the EMC Installation Guidelines (IB(NA)67310).

This servo is certified by TUV, third-party assessment organization, to comply with the EMC directive in the conforming methods of the EMC Installation Guidelines.

(2) Low voltage directive

The low voltage directive applies also to servo units alone. Hence, they are designed to comply with the low voltage directive.

This servo is certified by TUV, third-party assessment organization, to comply with the low voltage directive.

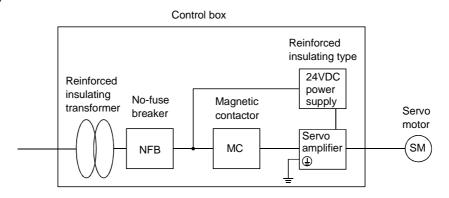
(3) Machine directive

Not being machines, the servo amplifiers need not comply with this directive.

2. PRECAUTIONS FOR COMPLIANCE

(1) Servo amplifiers and servo motors used

Use the servo amplifiers and servo motors which comply with the standard model.


Servo amplifier :MR-J2S-10A to MR-J2S-700A

MR-J2S-10A1 to MR-J2S-40A1

Servo motor :HC-KFS□

HC-MFS□ HC-SFS□ HC-RFS□ HC-UFS□

(2) Configuration

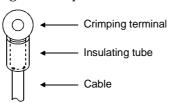
(3) Environment

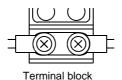
Operate the servo amplifier at or above the contamination level 2 set forth in IEC664. For this purpose, install the servo amplifier in a control box which is protected against water, oil, carbon, dust, dirt, etc. (IP54).

(4) Power supply

- (a) Operate the servo amplifier to meet the requirements of the overvoltage category II set forth in IEC664. For this purpose, a reinforced insulating transformer conforming to the IEC or EN Standard should be used in the power input section.
- (b) When supplying interface power from external, use a 24VDC power supply which has been insulation-reinforced in I/O.

(5) Grounding


- (a) To prevent an electric shock, always connect the protective earth (PE) terminals (marked 😩) of the servo amplifier to the protective earth (PE) of the control box.
- (b) Do not connect two ground cables to the same protective earth (PE) terminal. Always connect the cables to the terminals one-to-one.


(c) If a leakage current breaker is used to prevent an electric shock, the protective earth (PE) terminals of the servo amplifier must be connected to the corresponding earth terminals.

(6) Wiring

(a) The cables to be connected to the terminal block of the servo amplifier must have crimping terminals provided with insulating tubes to prevent contact with adjacent terminals.

(b) When the servo motor has a power supply lead, use a fixed terminal block to connect it with the servo amplifier. Do not connect cables directly.

(7) Auxiliary equipment and options

- (a) The no-fuse breaker and magnetic contactor used should be the EN or IEC standard-compliant products of the models described in Section 13.2.2.
- (b) The sizes of the cables described in Section 13.2.1 meet the following requirements. To meet the other requirements, follow Table 5 and Appendix C in EN60204-1.
 - Ambient temperature: 40 (104) [°C (°F)]
 - Sheath: PVC (polyvinyl chloride)
 - Installed on wall surface or open table tray
- (c) Use the EMC filter for noise reduction. The radio noise filter (FR-BIF) is not required.

(8) Performing EMC tests

When EMC tests are run on a machine/device into which the servo amplifier has been installed, it must conform to the electromagnetic compatibility (immunity/emission) standards after it has satisfied the operating environment/electrical equipment specifications.

For the other EMC directive guidelines on the servo amplifier, refer to the EMC Installation Guidelines(IB(NA)67310).

CONFORMANCE WITH UL/C-UL STANDARD

(1) Servo amplifiers and servo motors used

Use the servo amplifiers and servo motors which comply with the standard model.

Servo amplifier :MR-J2S-10A to MR-J2S-700A

MR-J2S-10A1 to MR-J2S-40A1

Servo motor :HC-KFS□

HC-MFS□ HC-SFS□ HC-RFS□ HC-UFS□

(2) Installation

Install a fan of 100CFM air flow 10.16 cm (4 in) above the servo amplifier or provide cooling of at least equivalent capability.

(3) Short circuit rating

This servo amplifier conforms to the circuit whose peak current is limited to 5000A or less. Having been subjected to the short-circuit tests of the UL in the alternating-current circuit, the servo amplifier conforms to the above circuit.

(4) Capacitor discharge time

The capacitor discharge time is as listed below. To ensure safety, do not touch the charging section for 10 minutes after power-off.

Servo amplifier	Discharge time [min]
MR-J2S-10A(1) • 20A(1)	1
MR-J2S-40A(1) • 60A	2
MR-J2S-70A to 350A	3
MR-J2S-500A • 700A	5

(5) Options and auxiliary equipment

Use UL/C-UL standard-compliant products.

<<About the manuals>>

This Instruction Manual and the MELSERVO Servo Motor Instruction Manual are required if you use the General-Purpose AC servo MR-J2S-A for the first time. Always purchase them and use the MR-J2S-A safely.

Relevant manuals

Manual name	Manual No.
MELSERVO-J2-Super Series To Use the AC Servo Safely	IB(NA)0300010
MELSERVO Servo Motor Instruction Manual	SH(NA)3181
EMC Installation Guidelines	IB(NA)67310

CONTENTS

1. FUNCTIONS AND CONFIGURATION	1- 1 to 1-18
1.1 Introduction	1- 1
1.2 Function block diagram	
1.3 Servo amplifier standard specifications	
1.4 Function list	
1.5 Model code definition	
1.6 Combination with servo motor	
1.7 Structure	
1.7.1 Parts identification	
1.7.2 Removal and reinstallation of the front cover	
1.8 Servo system with auxiliary equipment	
2. INSTALLATION	2- 1 to 2- 4
2.1 Environmental conditions	2- 1
2.2 Installation direction and clearances	2- 2
2.3 Keep out foreign materials	2- 3
2.4 Cable stress	2- 4
3. SIGNALS AND WIRING	3- 1 to 3- 58
3.1 Standard connection example	3- 2
3.1.1 Position control mode	3- 2
3.1.2 Speed control mode	3- 6
3.1.3 Torque control mode	3- 8
3.2 Internal connection diagram of servo amplifier	3-10
3.3 I/O signals	3-11
3.3.1 Connectors and signal arrangements	3-11
3.3.2 Signal explanations	
3.4 Detailed description of the signals	3-23
3.4.1 Position control mode	
3.4.2 Speed control mode	
3.4.3 Torque control mode	3-30
3.4.4 Position/speed control change mode	3-33
3.4.5 Speed/torque control change mode	3-35
3.4.6 Torque/position control change mode	3-37
3.5 Alarm occurrence timing chart	3-38
3.6 Interfaces	
3.6.1 Common line	3-39
3.6.2 Detailed description of the interfaces	
3.7 Input power supply circuit	
3.7.1 Connection example	
3.7.2 Terminals	
3.7.3 Power-on sequence	
3.8 Connection of servo amplifier and servo motor	
3 8 1 Connection instructions	3-49

3.8.2 Connection diagram	3-49
3.8.3 I/O terminals	3-51
3.9 Servo motor with electromagnetic brake	3-53
3.10 Grounding	3-56
3.11 Servo amplifier terminal block (TE2) wiring method	3-57
3.12 Instructions for the 3M connector	3-58
4. OPERATION	4- 1 to 4- 6
4.1 When switching power on for the first time	4- 1
4.2 Startup	
4.2.1 Selection of control mode	
4.2.2 Position control mode	
4.2.3 Speed control mode	
4.2.4 Torque control mode	
4.3 Multidrop communication	
5. PARAMETERS	5- 1 to 5- 34
5.1 Parameter list	5_ 1
5.1.1 Parameter write inhibit	
5.1.2 Lists	
5.2 Detailed description	
5.2.1 Electronic gear	
5.2.2 Analog output	
5.2.3 Using forward/reverse rotation stroke end to change the stopping pattern	
5.2.4 Alarm history clear	
5.2.5 Position smoothing	
6. DISPLAY AND OPERATION	6- 1 to 6-16
6.1 Display flowchart	6- 1
6.2 Status display	
6.2.1 Display examples	
6.2.2 Status display list	
6.2.3 Changing the status display screen	
6.3 Diagnostic mode	
6.4 Alarm mode	
6.5 Parameter mode	
6.6 External I/O signal display	
6.7 Output signal (DO) forced output	
6.8 Test operation mode	
6.8.1 Mode change	
6.8.2 Jog operation	
6.8.3 Positioning operation	
6.8.4 Motor-less operation	

7. GENERAL GAIN ADJUSTMENT	7- 1 to 7-12
7.1 Different adjustment methods	7- 1
7.1.1 Adjustment on a single servo amplifier	
7.1.2 Adjustment using servo configuration software	
7.2 Auto tuning	
7.2.1 Auto tuning mode	
7.2.2 Auto tuning mode operation	
7.2.3 Adjustment procedure by auto tuning	
7.2.4 Response level setting in auto tuning mode	
7.3 Manual mode 1 (simple manual adjustment)	
7.3.1 Operation of manual mode 1	
7.3.2 Adjustment by manual mode 1	
7.4 Interpolation mode	
7.5 Differences in auto tuning between MELSERVO-J2 and MELSERVO-J2-Super	
7.5.1 Response level setting	
7.5.2 Auto tuning selection	
1.0.2 Auto turning selection.	
8. SPECIAL ADJUSTMENT FUNCTIONS	8- 1 to 8-10
8.1 Function block diagram	8 - 1
8.2 Machine resonance suppression filter	
8.3 Adaptive vibration suppression control	
8.4 Low-pass filter	
8.5 Gain changing function	
8.5.1 Applications	
8.5.2 Function block diagram	
8.5.3 Parameters	
8.5.4 Gain changing operation	
9. INSPECTION	9- 1 to 9- 2
10. TROUBLESHOOTING	10- 1 to 10-12
10.1 Trouble at start-up	10- 1
10.1.1 Position control mode	
10.1.2 Speed control mode	10- 4
10.1.3 Torque control mode	
10.2 When alarm or warning has occurred	
10.2.1 Alarms and warning list	
10.2.2 Remedies for alarms	
10.2.3 Remedies for warnings	
11. OUTLINE DIMENSION DRAWINGS	11- 1 to 11- 8
11.1 Servo amplifiers	11- 1
11.2 Connectors	
	· · · · · · · · · · · · · · · · · · ·

12. CHARACTERISTICS	12- 1 to 12- 8
12.1 Overload protection characteristics	19_ 1
12.2 Power supply equipment capacity and generated loss	
12.3 Dynamic brake characteristics	
12.4 Encoder cable flexing life	
12.4 Encouer cable nexing me	12- /
13. OPTIONS AND AUXILIARY EQUIPMENT	13- 1 to 13-38
13.1 Options	13- 1
13.1.1 Regenerative brake options	13- 1
13.1.2 Brake unit	13- 7
13.1.3 Power return converter	13- 9
13.1.4 Cables and connectors	13-12
13.1.5 Junction terminal block (MR-TB20)	13-20
13.1.6 Maintenance junction card (MR-J2CN3TM)	13-22
13.1.7 Battery (MR-BAT, A6BAT)	13-23
13.1.8 Servo configurations software	13-24
13.2 Auxiliary equipment	13-26
13.2.1 Recommended wires	13-26
13.2.2 No-fuse breakers, fuses, magnetic contactors	13-28
13.2.3 Power factor improving reactors	13-28
13.2.4 Relays	13-29
13.2.5 Surge absorbers	13-29
13.2.6 Noise reduction techniques	13-29
13.2.7 Leakage current breaker	13-35
13.2.8 EMC filter	13-37
14. COMMUNICATION FUNCTIONS	14- 1 to 14- 28
14.1 Configuration	14 1
14.1.1 RS-422 configuration	
14.1.2 RS-232C configuration	
14.2 Communication specifications	
14.2.1 Communication overview	
14.2.2 Parameter setting	
14.4 Character codes	
14.6 Charles	
14.6 Checksum	
14.7 Time-out operation	
14.8 Retry operation	
14.10 C	
14.10 Communication procedure example	
14.11 Command and data No. list	
14.11.1 Read commands	
	1/1-12

14.12 Detailed explanations of commands	14-14
14.12.1 Data processing	14-14
14.12.2 Status display	14-16
14.12.3 Parameter	14-17
14.12.4 External I/O pin statuses (DIO diagnosis)	14-19
14.12.5 Disable/enable of external I/O signals (DIO)	14-20
14.12.6 External input signal ON/OFF (test operation)	14-21
14.12.7 Test operation mode	14-22
14.12.8 Output signal pin ON/OFF output signal (DO) forced output	14-24
14.12.9 Alarm history	
14.12.10 Current alarm	14-26
14.12.11 Other commands	14-27
15. ABSOLUTE POSITION DETECTION SYSTEM	15- 1 to 15- 66
15.1 Outline	15- 1
15.1.1 Features	15- 1
15.1.2 Restrictions	15- 1
15.2 Specifications	15- 2
15.3 Battery installation procedure	
15.4 Standard connection diagram	
15.5 Signal explanation	
15.6 Startup procedure	
15.7 Absolute position data transfer protocol	
15.7.1 Data transfer procedure	15- 7
15.7.2 Transfer method	
15.7.3 Home position setting	
15.7.4 Use of servo motor with electromagnetic brake	15-19
15.7.5 How to process the absolute position data at detection of stroke end	
15.8 Examples of use	
15.8.1 MELSEC-A1S (A1SD71)	
15.8.2 MELSEC FX(2N)-32MT (FX(2N)-1PG)	15-35
15.8.3 MELSEC A1SD75(AD75)	15-47
15.9 Confirmation of absolute position detection data	
15.10 Absolute position data transfer errors	
15.10.1 Corrective actions	15-63
15.10.2 Error resetting conditions	15-65
Appendix	App- 1 to App- 2
App 1. Signal arrangement recording sheets	= =
App 2. Status display block diagram	App- 2

Optional Servo Motor Instruction Manual CONTENTS

The rough table of contents of the optional MELSERVO Servo Motor Instruction Manual is introduced here for your reference. Note that the contents of the Servo Motor Instruction Manual are not included in the Servo Amplifier Instruction Manual.

1. INTRODUCTION
2 INCTALLATION
2. INSTALLATION
3. CONNECTORS USED FOR SERVO MOTOR WIRING
4. INSPECTION
4. INCI ECTION
5. SPECIFICATIONS
C CHARACTERISTICS
6. CHARACTERISTICS
7. OUTLINE DIMENSION DRAWINGS
8. CALCULATION METHODS FOR DESIGNING
0. CALCULATION INIETHOUS FOR DESIGNING

1. FUNCTIONS AND CONFIGURATION

1.1 Introduction

The Mitsubishi MELSERVO-J2-Super series general-purpose AC servo is based on the MELSERVO-J2 series and has further higher performance and higher functions.

It has position control, speed control and torque control modes. Further, it can perform operation with the control modes changed, e.g. position/speed control, speed/torque control and torque/position control. Hence, it is applicable to a wide range of fields, not only precision positioning and smooth speed control of machine tools and general industrial machines but also line control and tension control.

As this new series has the RS-232C or RS-422 serial communication function, a servo configuration software-installed personal computer or the like can be used to perform parameter setting, test operation, status display monitoring, gain adjustment, etc.

With real-time auto tuning, you can automatically adjust the servo gains according to the machine.

The MELSERVO-J2-Super series servo motor is equipped with an absolute position encoder which has the resolution of 131072 pulses/rev to ensure more accurate control as compared to the MELSERVO-J2 series. Simply adding a battery to the servo amplifier makes up an absolute position detection system. This makes home position return unnecessary at power-on or alarm occurrence by setting a home position once.

(1) Position control mode

An up to 500kpps high-speed pulse train is used to control the speed and direction of a motor and execute precision positioning of 131072 pulses/rev resolution.

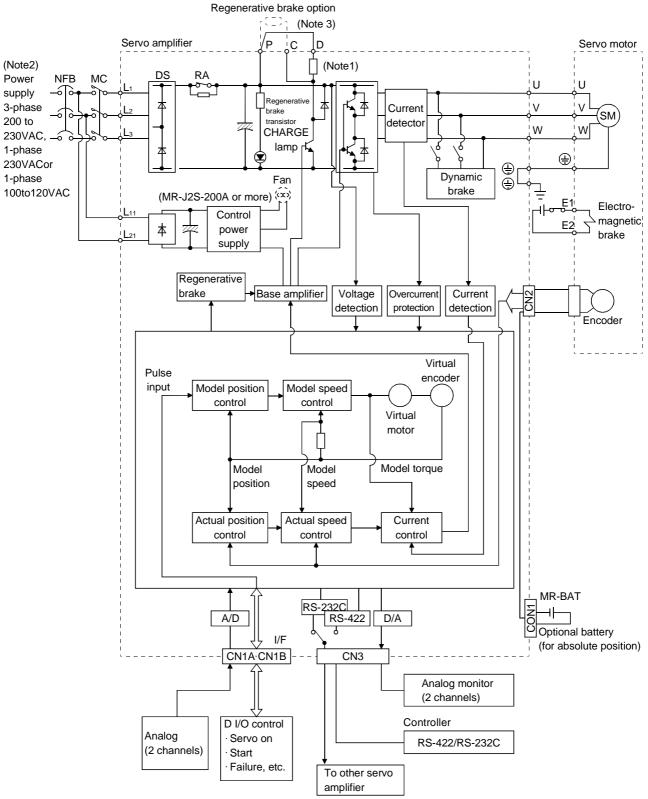
The position smoothing function provides a choice of two different modes appropriate for a machine, so a smoother start/stop can be made in response to a sudden position command.

A torque limit is imposed on the servo amplifier by the clamp circuit to protect the power transistor in the main circuit from overcurrent due to sudden acceleration/deceleration or overload. This torque limit value can be changed to any value with an external analog input or the parameter.

(2) Speed control mode

An external analog speed command (0 to $\pm 10 \text{VDC}$) or parameter-driven internal speed command (max. 7 speeds) is used to control the speed and direction of a servo motor smoothly.

There are also the acceleration/deceleration time constant setting in response to speed command, the servo lock function at a stop time, and automatic offset adjustment function in response to external analog speed command.


(3) Torque control mode

An external analog torque command (0 to $\pm 8 \text{VDC}$) or parameter-driven internal torque command is used to control the torque output by the servo motor.

To protect misoperation under no load, the speed limit function (external or internal setting) is also available for application to tension control, etc.

1.2 Function block diagram

The function block diagram of this servo is shown below.

Note:1. The built-in regenerative brake resistor is not provided for the MR-J2S-10A(1).

- 2. For 1-phase 230VAC, connect the power supply to L_1,L_2 and leave L_3 open. L_3 is not provided for a 1-phase 100 to120VAC power supply.
- 3. For MR-J2S-350 or less.

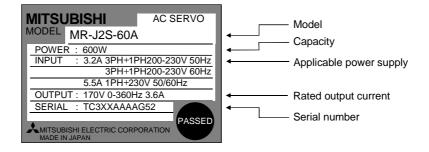
1.3 Servo amplifier standard specifications

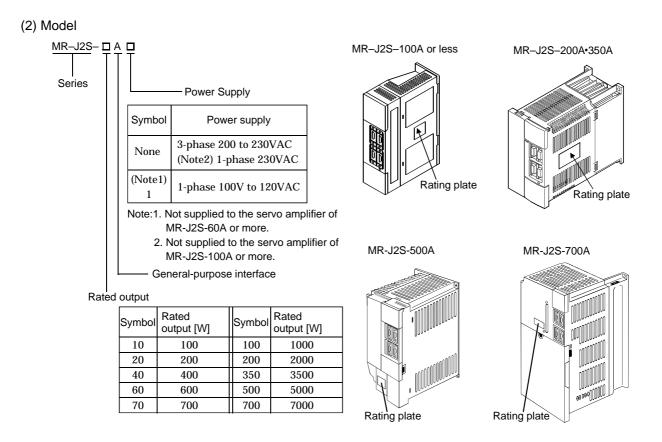
	_		Servo A	mplifier													
ltor			MR	-J2S-□	10A	20A	40A	60A	70A	100A	200A	350A	500A	700A	10A1	20A1	40A1
Item	Voltage/frequency		0 tagg/traguancy						-	1-phase 100 to 120VAC 50/60Hz							
Power supply	Permissible voltage fluctuation			3-phas 170 to	3-phase 200 to 230VAC: 170 to 253VAC 3-phase 170 to 253VAC 1-phase 230VAC: 207 to 253VAC 1-phase 230VAC: 207 to 253VAC												
P	Per	missible fre	equency fluctuat	tion	Within ±5%												
	Pov	wer supply o	capacity							Refer	to Secti	on12.2					
	tem							Sine-w	ave PV	VM con			ontrol:	system			
Dyr	nami	ic brake									Built-ir						
Pro	tecti	ive function	s		therma brake	al relay error p	y), serv protecti	o moto	r over dervolt	ve ove heat pr age, ins ion	otectio	n, enco	der eri	or pro	tection,	regen	erative
ode	Max	x. input pul	se frequency				500kp	ps (for o	differer	ntial red	ceiver),	200kp	ps (for o	open co	llector)		
m lo	Con	nmand puls	oulse multiplying factor Electronic gear A:1 to 65535 • 131072 B:1 to 65535, 1/50 < A/B < 500														
Position control mode	In-p	position ran	ange setting 0 to ±10000 pulse (command pulse unit)														
sition	Err	or excessive	e		±10 revolutions												
Po	Tor	que limit		Set by parameter setting or external analog input (0 to +10VDC/maximum torque)													
ode	Speed control range				Analog speed command 1: 2000, internal speed command 1: 5000												
ol m	Ana	alog speed o	command input		0 to ±10VDC / Rated speed												
Speed control mode	Spe	eed fluctuat	ion ratio		±0.01% or less (load fluctuation 0 to 100%) 0% or less (power fluctuation ±10%)												
eed	•				±0.2% max.(ambient temperature 25±10°C) for external speed setting only												
Sp	Tor	que limit			Set	by para	ameter	setting	g or ex	ternal a	analog	input (0 to +1	0VDC/	maxim	um tor	que)
Tor con	_	Analog to	que command i	nput	0 to ±8VDC / Maximum torque (input impedance 10 to 12kΩ)												
mod		Speed lim	it		S	et by p	arame	ter sett	ing or	externa	al anal	og inpu	it (0 to	±10VD	C/Rate	d speed	d)
Stru	uctu	re			Self-cooled, open (1P00) Force-cooling, open (1P00)					elf-coole pen(IP0							
			Operation	[°C]	0 to +5	5 (non-	freezin	ıg)									
		bient	Operation		32 to +												
<u>+</u>	tem	nperature	Storage	[°C]		o +65 (r +149 (r											
nen	Am	bient	Operation	1													
ron	hur	midity	Storage		90%RI	H or les	s (non-	conden	sing)								
Environment	Ambient			Indoors (no direct sunlight) Free from corrosive gas, flammable gas, oil mist, dust and dirt													
	Altitude) above		_								
Vibration 5.9 [m/s²] or less																	
	7 10					t/s²] or		I	I		I	ı	ı	ı		I	
Wei	ight			[kg]	0.7	0.7	1.1	1.1	1.7	1.7	2.0	2.0	4.9	7.2	0.7	0.7	1.1
	_			[lb]	1.5	1.5	2.4	2.4	3.75	3.75	4.4	4.4	10.8	15.87	1.5	1.5	2.4

1.4 Function list

The following table lists the functions of this servo. For details of the functions, refer to the corresponding chapters and sections.

Function	Description	(Note) Control mode	Refer to	
Position control mode	This servo is used as position control servo.	Р	Section 3.1.1 Section 3.4.1 Section 4.2.2	
Speed control mode	S	Section 3.1.2 Section 3.4.2 Section 4.2.3		
Torque control mode	This servo is used as torque control servo.	Т	Section 3.1.3 Section 3.4.3 Section 4.2.4	
Position/speed control change mode	Using external input signal, control can be switched between position control and speed control.	P/S	Section 3.4.4	
Speed/torque control change mode	Using external input signal, control can be switched between speed control and torque control.	S/T	Section 3.4.5	
Torque/position control change mode	Using external input signal, control can be switched between torque control and position control.	T/P	Section 3.4.6	
High-resolution encoder	High-resolution encoder of 131072 pulses/rev is used as a servo motor encoder.	P, S, T		
Absolute position detection system	Merely setting a home position once makes home position return unnecessary at every power-on.	Р	Chapter 15	
Gain changing function	You can switch between gains during rotation and gains during stop or use an external signal to change gains during operation.	P, S	Section 8.5	
Adaptive vibration suppression control	Servo amplifier detects mechanical resonance and sets filter			
Low-pass filter	Suppresses high-frequency resonance which occurs as servo system response is increased.	P, S, T	Section 8.4	
Machine analyzer function	Analyzes the frequency characteristic of the mechanical system by simply connecting a servo configuration software-installed personal computer and servo amplifier.	Р		
Machine simulation	Can simulate machine motions on a personal computer screen on the basis of the machine analyzer results.	Р		
Gain search function	Personal computer changes gains automatically and searches for overshoot-free gains in a short time.	P		
Slight vibration suppression control	Suppresses vibration of ±1 pulse produced at a servo motor stop.	P	Section 7.5	
Electronic gear	Input pulses can be multiplied by 1/50 to 50.	P	Parameters No. 3, 4	
Auto tuning	Automatically adjusts the gain to optimum value if load applied to the servo motor shaft varies. Higher in performance than MR-J2 series servo amplifier.	P, S	Chapter 7	
Position smoothing	Speed can be increased smoothly in response to input pulse.	P	Parameter No. 7	
S-pattern acceleration/ deceleration time constant	Speed can be increased and decreased smoothly.	S, T	Parameter No. 13	
Regenerative brake option	Used when the built-in regenerative brake resistor of the servo amplifier does not have sufficient regenerative capability for the regenerative power generated.			
Brake unit	Used when the regenerative brake option cannot provide enough regenerative power. Can be used with the MR-J2S-500A • MR-J2S-700A.	P, S, T	Section 13.1.2	


Function	Description	(Note) Control mode	Refer to
Return converter	Used when the regenerative brake option cannot provide enough regenerative power. Can be used with the MR-J2S-500A • MR-J2S-700A.	P, S, T	Section 13.1.3
Alarm history clear	Alarm history is cleared.	P, S, T	Parameter No. 16
Restart after instantaneous power failure	If the input power supply voltage had reduced to cause an alarm but has returned to normal, the servo motor can be restarted by merely switching on the start signal.	S	Parameter No. 20
Command pulse selection	Command pulse train form can be selected from among four different types.	P	Parameter No. 21
Input signal selection	Forward rotation start, reverse rotation start, servo-on and other input signals can be assigned to any pins.	P, S, T	Parameters No. 43 to 48
Torque limit	Servo motor-generated torque can be limited to any value.	P, S	Section 3.4.1 (5) Parameter No. 28
Speed limit	Servo motor speed can be limited to any value.	Т	Section 3.4.3 (3) Parameter No. 8 to 10,72 to 75
Status display	Servo status is shown on the 5-digit, 7-segment LED display	P, S, T	Section 6.2
External I/O signal display	ON/OFF statuses of external I/O signals are shown on the display.	P, S, T	Section 6.6
Output signal (DO) forced output	Output signal can be forced on/off independently of the servo status. Use this function for output signal wiring check, etc.	P, S, T	Section 6.7
Automatic VC offset	Voltage is automatically offset to stop the servo motor if it does not come to a stop at the analog speed command (VC) or analog speed limit (VLA) of 0V.	S, T	Section 6.3
Test operation mode	Servo motor can be run from the operation section of the servo amplifier without the start signal entered.		Section 6.8
Analog monitor output	Servo status is output in terms of voltage in real time.	P, S, T	Parameter No. 17
Servo configuration software	Using a personal computer, parameter setting, test operation, status display, etc. can be performed.	P, S, T	Section 13.1.8
Alarm code output	If an alarm has occurred, the corresponding alarm number is output in 3-bit code.	P, S, T	Section 10.2.1


Note:P: Position control mode, S: Speed control mode, T: Torque control mode

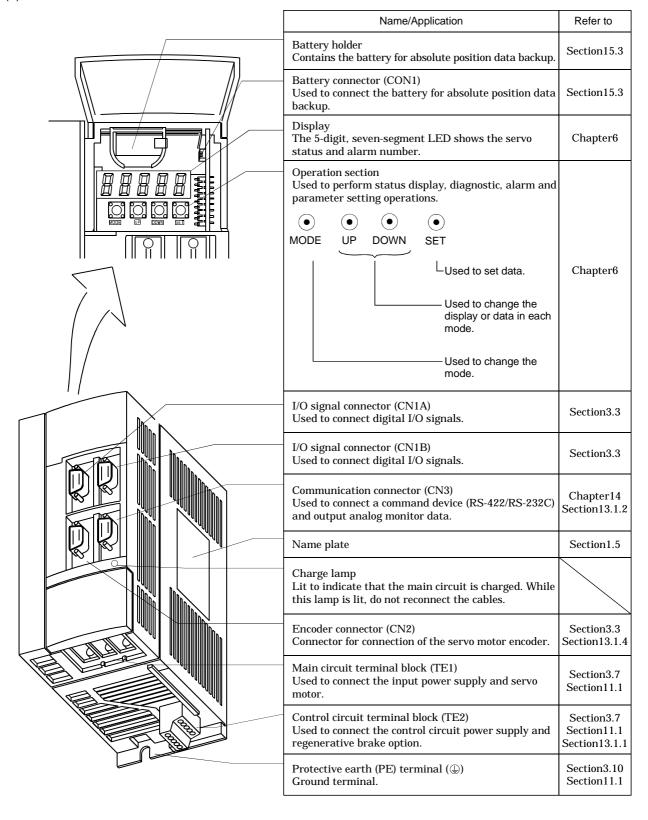
P/S: Position/speed control change mode, S/T: Speed/torque control change mode, T/P: Torque/position control change mode

1.5 Model code definition

(1) Rating plate

1.6 Combination with servo motor

The following table lists combinations of servo amplifiers and servo motors. The same combinations apply to the models with electromagnetic brakes and the models with reduction gears.


	Servo motors							
Servo amplifier	HC-KFS□	HC-MFS□	HC-SFS□			HC-RFS□	HC-UFS□	
			1000r/min	2000r/min	3000r/min	HC-RF5L	2000r/min	3000r/min
MR-J2S-10A(1)	053 • 13	053 • 13						13
MR-J2S-20A(1)	23	23						23
MR-J2S-40A(1)	43	43						43
MR-J2S-60A				52	53			
MR-J2S-70A	(Note) 73	73					72	73
MR-J2S-100A			81	102	103			
MR-J2S-200A			121 • 201	152 • 202	153 • 203	103 • 153	152	
MR-J2S-350A			301	352	353	203	202	
MR-J2S-500A				502		353 • 503	352 502	
MR-J2S-700A				702				

Note: The HC-KFS73 may not be connected depending on the production time of the servo amplifier. Please consult us.

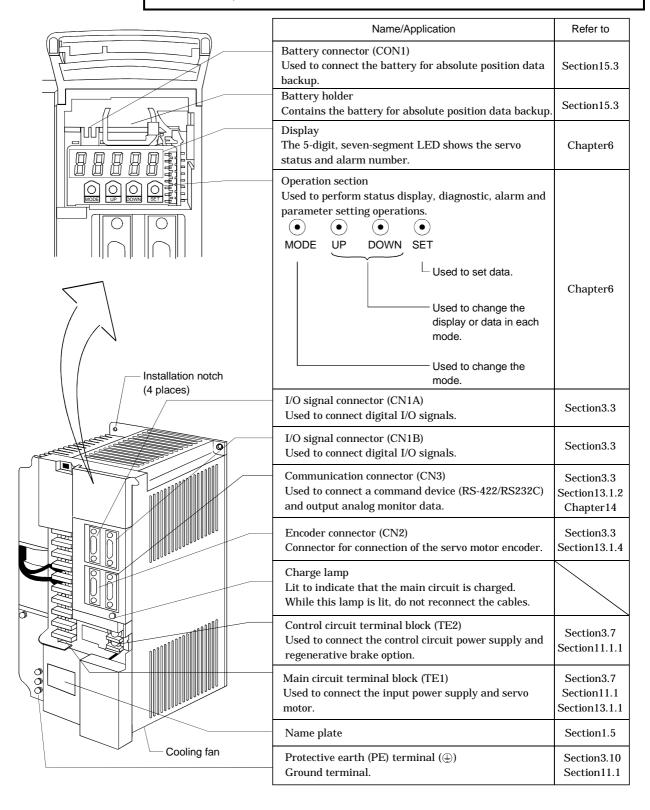
1.7 Structure

1.7.1 Parts identification

(1) MR-J2S-100A or less

(2) MR-J2S-200A • MR-J2S-350A

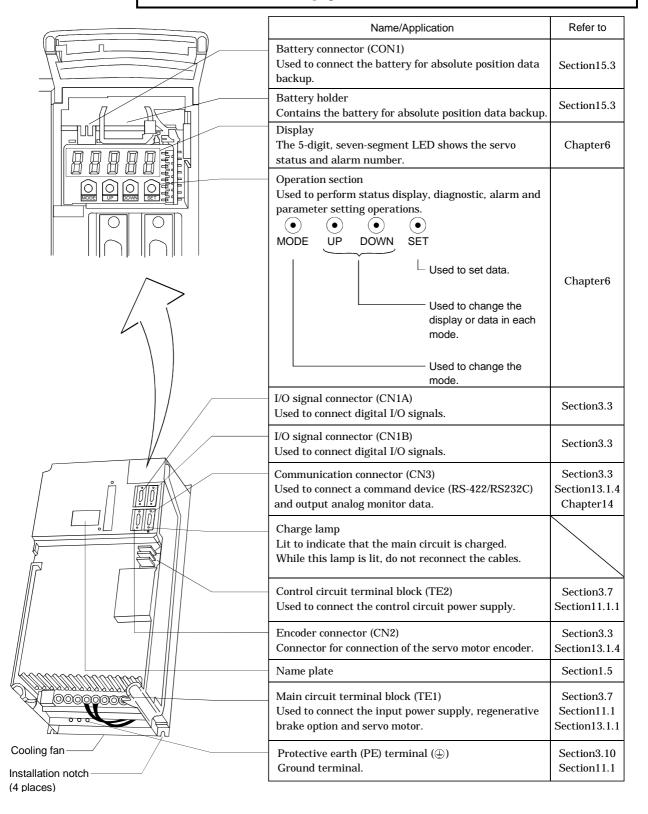
POINT


• The servo amplifier is shown without the front cover. For removal of the front cover, refer to Section 1.7.2.

	Name/Application	Refer to
	Battery holder Contains the battery for absolute position data backup.	Section15.3
	Battery connector (CON1) Used to connect the battery for absolute position data backup.	Section15.3
	Display The 5-digit, seven-segment LED shows the servo status and alarm number.	Chapter6
	Operation section Used to perform status display, diagnostic, alarm and parameter setting operations.	
	MODE UP DOWN SET	
	Used to set data.	Chapter6
	Used to change the display or data in each mode.	
	Used to change the mode.	
	I/O signal connector (CN1A) Used to connect digital I/O signals.	Section3.3
	I/O signal connector (CN1B) Used to connect digital I/O signals.	Section3.3
	Communication connector (CN3) Used to connect a command device (RS-422/RS232C) and output analog monitor data.	Section3.3 Section13.1.2 Chapter14
	Name plate	Section1.5
	Charge lamp Lit to indicate that the main circuit is charged. While this lamp is lit, do not reconnect the cables.	
	Encoder connector (CN2) Connector for connection of the servo motor encoder.	Section3.3 Section13.1.4
	Main circuit terminal block (TE1) Used to connect the input power supply and servo motor.	Section3.7 Section11.1
Cooling fan	Control circuit terminal block (TE2) Used to connect the control circuit power supply and regenerative brake option.	Section3.7 Section11.1 Section13.1.1
Installation notch (4 places)	Protective earth (PE) terminal ($\mbox{\textcircled{$\oplus$}})$ Ground terminal.	Section3.10 Section11.1

(3) MR-J2S-500A

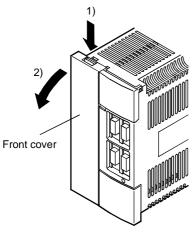
POINT


• The servo amplifier is shown without the front cover. For removal of the front cover, refer to Section 1.7.2.

(4) MR-J2S-700A

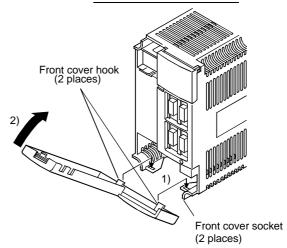
POINT

• The servo amplifier is shown without the front cover. For removal of the front cover, refer to next page.


1.7.2 Removal and reinstallation of the front cover

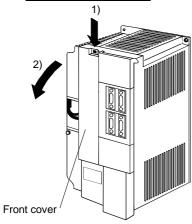
CAUTION

 To avoid the risk of an electric shock, do not open the front cover while power is on.

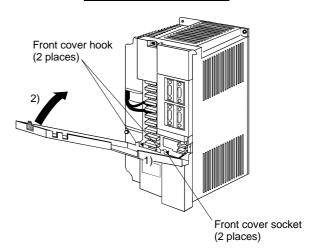

(1) For MR-J2S-200A or more

Removal of the front cover

- 1) Hold down the removing knob.
- 2) Pull the front cover toward you.


Reinstallation of the front cover

- 1) Insert the front cover hooks into the front cover sockets of the servo amplifier.
- Press the front cover against the servo amplifier until the removing knob clicks.


(2) For MR-J2S-500A

Removal of the front cover

- 1) Hold down the removing knob.
- 2) Pull the front cover toward you.

Reinstallation of the front cover

- Insert the front cover hooks into the front cover sockets of the servo amplifier.
- 2) Press the front cover against the servo amplifier until the removing knob clicks.

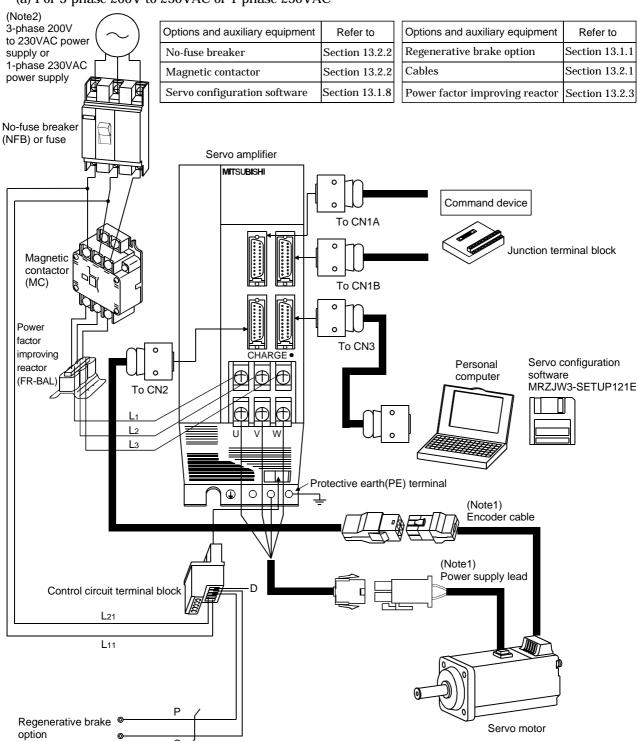
(3) For MR-J2S-700A

Removal of the front cover

Front cover socket (2 places)

- 1) Push the removing knob A) or B), and put you finger into the front hole of the front cover.
- 2) Pull the front cover toward you.
- 1) Insert the two front cover hooks at the bottom into the sockets of the servo amplifier.
- 2) Press the front cover against the servo amplifier until the removing knob clicks.

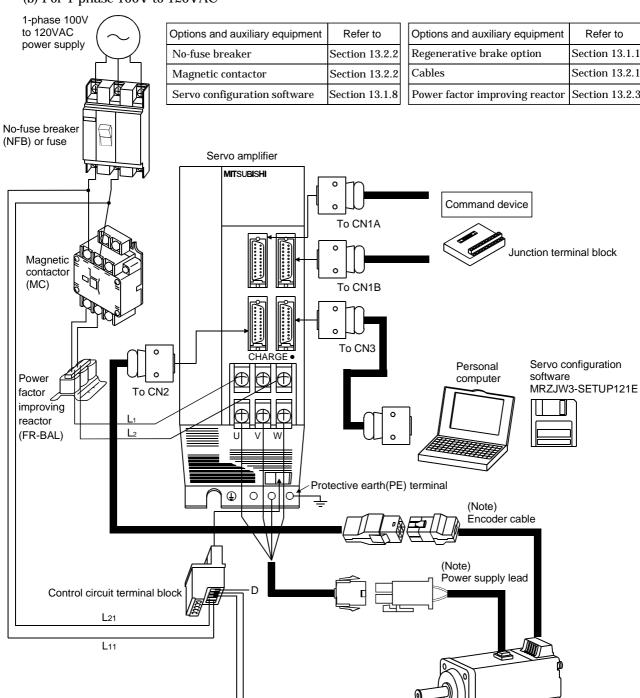
Reinstallation of the front cover


1.8 Servo system with auxiliary equipment

MARNING

To prevent an electric shock, always connect the protective earth (PE) terminal (terminal marked \oplus) of the servo amplifier to the protective earth (PE) of the control box

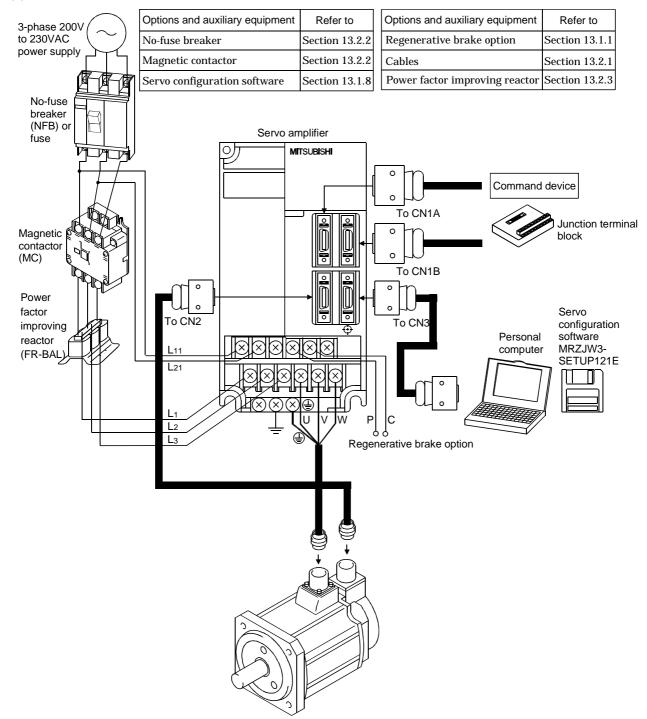
(1) MR-J2S-100A or less


(a) For 3-phase 200V to 230VAC or 1-phase 230VAC

Note: 1. The HC-SFS, HC-RFS series have cannon connectors.

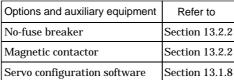
^{2.} A 1-phase 230VAC power supply may be used with the servo amplifier of MR-J2S-70A or less. Connect the power supply to L1 and L2 terminals and leave L3 open.

(b) For 1-phase 100V to 120VAC

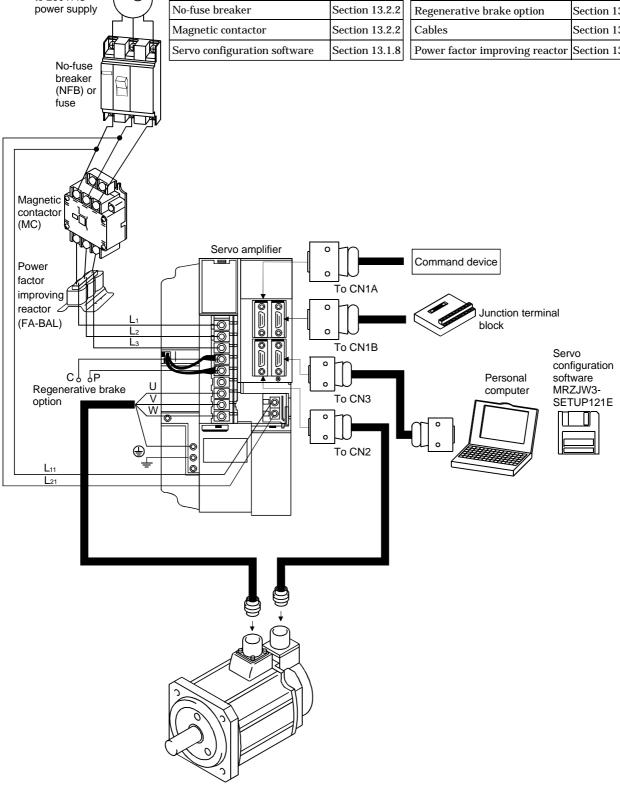

Note: The HC-SFS, HC-RFS series have cannon connectors.

Regenerative brake

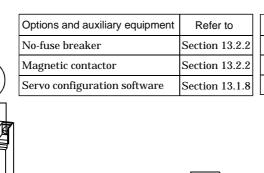
option

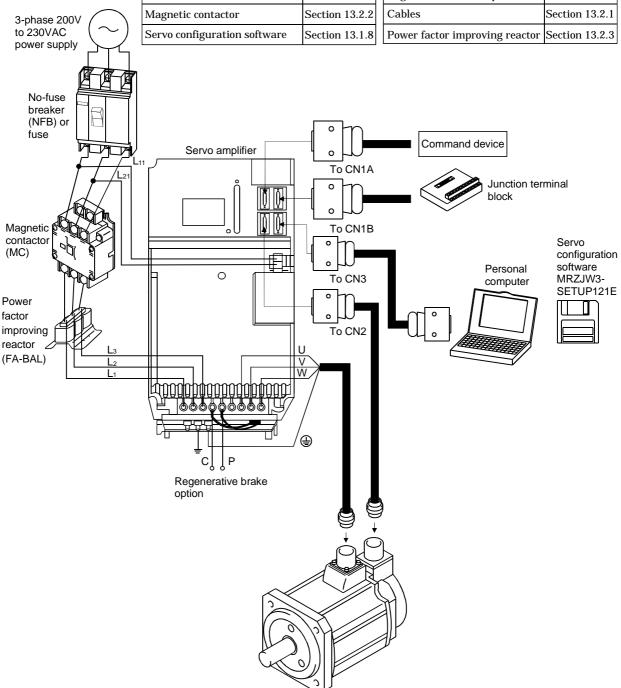

Servo motor

(2) MR-J2S-200A • MR-J2S-350A or more



(3) MR-J2S-500A


3-phase 200V to 230VAC


Options and auxiliary equipment	Refer to
Regenerative brake option	Section 13.1.1
Cables	Section 13.2.1
Power factor improving reactor	Section 13.2.3

(4) MR-J2S-700A

Options and auxiliary equipment	Refer to
Regenerative brake option	Section 13.1.1
Cables	Section 13.2.1
Power factor improving reactor	Section 13.2.3

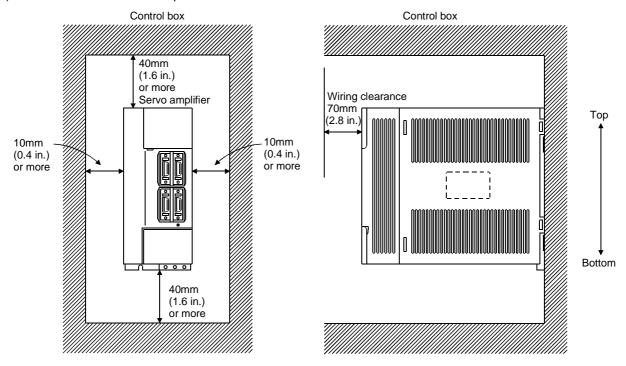
1. FUNCTIONS AND CONFIGURATION

2. INSTALLATION

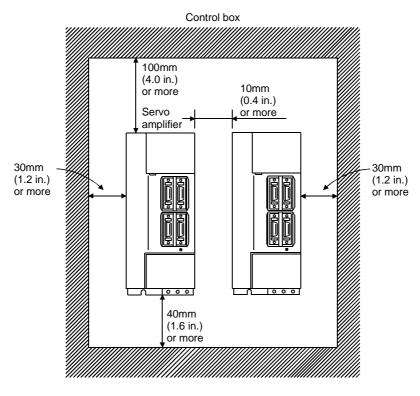
- Stacking in excess of the limited number of products is not allowed.
- Install the equipment to incombustibles. Installing them directly or close to combustibles will led to a fire.
- Install the equipment in a load-bearing place in accordance with this Instruction Manual.
- Do not get on or put heavy load on the equipment to prevent injury.
- Use the equipment within the specified environmental condition range.

- Provide an adequate protection to prevent screws, metallic detritus and other conductive matter or oil and other combustible matter from entering the servo amplifier.
- Do not block the intake/exhaust ports of the servo amplifier. Otherwise, a fault may occur.
- Do not subject the servo amplifier to drop impact or shock loads as they are precision equipment.
- Do not install or operate a faulty servo amplifier.
- When the product has been stored for an extended period of time, consult Mitsubishi.

2.1 Environmental conditions


Environment			Conditions	
Ambient temperature	Operation	[°C]	0 to +55 (non-freezing)	
		[°F]	32 to +131 (non-freezing)	
	Storage	[°C]	-20 to +65 (non-freezing)	
		[°F]	−4 to +149 (non-freezing)	
Ambient	Operation Storage		90%RH or less (non-condensing)	
humidity				
Ambience			Indoors (no direct sunlight)	
			Free from corrosive gas, flammable gas, oil mist, dust and dirt	
Altitude			Max. 1000m (3280 ft) above sea level	
Vibration	$[m/s^2]$		5.9 [m/s^2] or less	
	[ft/s ²]		19.4 [ft/s ²] or less	

2.2 Installation direction and clearances


- The equipment must be installed in the specified direction. Otherwise, a fault may occur.
- Leave specified clearances between the servo amplifier and control box inside walls or other equipment.

(1) Installation of one servo amplifier

(2) Installation of two or more servo amplifiers

Leave a large clearance between the top of the servo amplifier and the internal surface of the control box, and install a fan to prevent the internal temperature of the control box from exceeding the environmental conditions.

(3) Others

When using heat generating equipment such as the regenerative brake option, install them with full consideration of heat generation so that the servo amplifier is not affected.

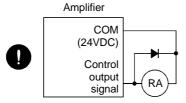
Install the servo amplifier on a perpendicular wall in the correct vertical direction.

2.3 Keep out foreign materials

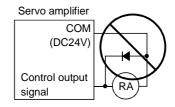
- (1) When installing the unit in a control box, prevent drill chips and wire fragments from entering the servo amplifier.
- (2) Prevent oil, water, metallic dust, etc. from entering the servo amplifier through openings in the control box or a fan installed on the ceiling.
- (3) When installing the control box in a place where there are toxic gas, dirt and dust, provide positive pressure in the control box by forcing in clean air to prevent such materials from entering the control box.

2. INSTALLATION

2.4 Cable stress


- (1) The way of clamping the cable must be fully examined so that flexing stress and cable's own weight stress are not applied to the cable connection.
- (2) In any application where the servo motor moves, the cables should be free from excessive stress. For use in any application where the servo motor moves run the cables so that their flexing portions fall within the optional encoder cable range. Fix the encoder cable and power cable of the servo motor.
- (3) Avoid any probability that the cable sheath might be cut by sharp chips, rubbed by a machine corner or stamped by workers or vehicles.
- (4) For installation on a machine where the servo motor will move, the flexing radius should be made as large as possible. Refer to section 12.4 for the flexing life.

3. SIGNALS AND WIRING


WARNING

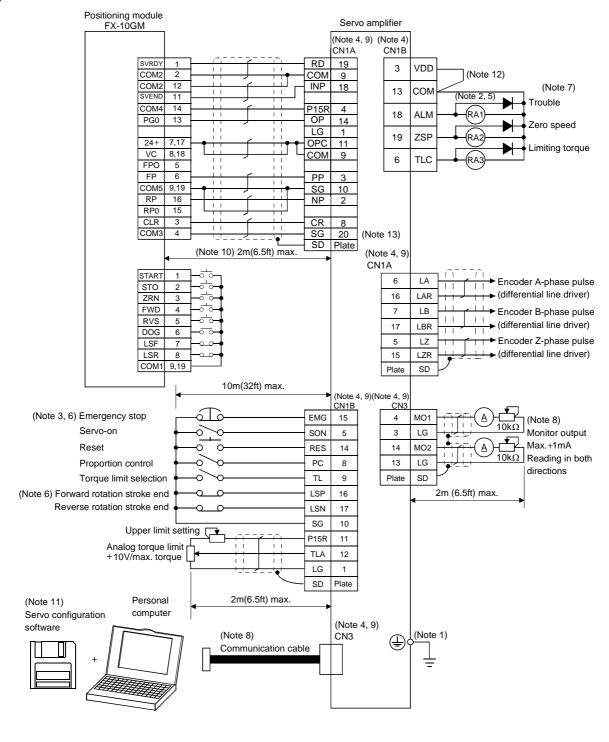
- Any person who is involved in wiring should be fully competent to do the work.
- Before starting wiring, switch power off, then wait for more than 10 minutes, and after the charge lamp has gone off, make sure that the voltage is safe in the tester or like. Otherwise, you may get an electric shock.
- Ground the servo amplifier and the servo motor securely.
- Do not attempt to wire the servo amplifier and servo motor until they have been installed. Otherwise, you may get an electric shock.
- The cables should not be damaged, stressed excessively, loaded heavily, or pinched. Otherwise, you may get an electric shock.
- Wire the equipment correctly and securely. Otherwise, the servo motor may misoperate, resulting in injury.
- Connect cables to correct terminals to prevent a burst, fault, etc.
- Ensure that polarity (+, −) is correct. Otherwise, a burst, damage, etc. may occur.
- The surge absorbing diode installed to the DC relay designed for control output should be fitted in the specified direction. Otherwise, the signal is not output due to a fault, disabling the emergency stop and other protective circuits.

Servo

- Use a noise filter, etc. to minimize the influence of electromagnetic interference, which may be given to electronic equipment used near the servo amplifier.
- Do not install a power capacitor, surge suppressor or radio noise filter (FR-BIF option) with the power line of the servo motor.
- When using the regenerative brake resistor, switch power off with the alarm signal.
 Otherwise, a transistor fault or the like may overheat the regenerative brake resistor, causing a fire.
- Do not modify the equipment.

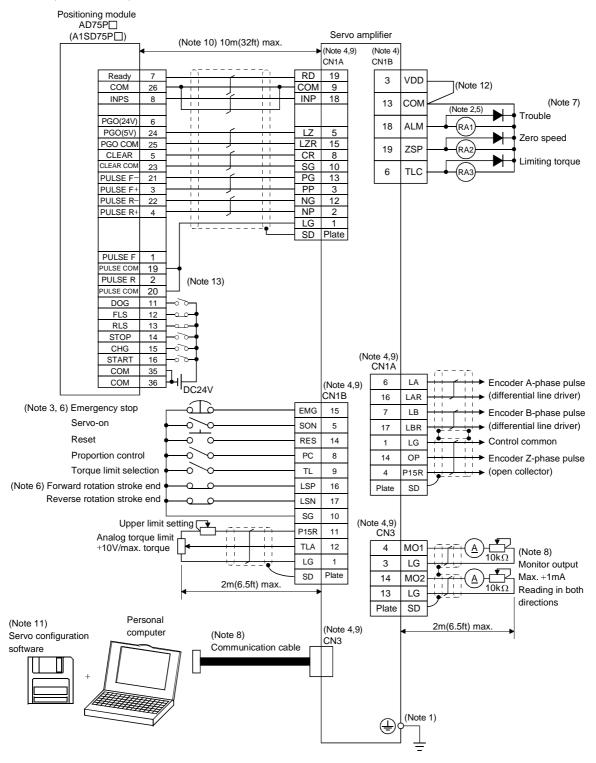
POINT

• CN1A, CN1B, CN2 and CN3 have the same shape. Wrong connection of the connectors will lead to a failure. Connect them correctly.

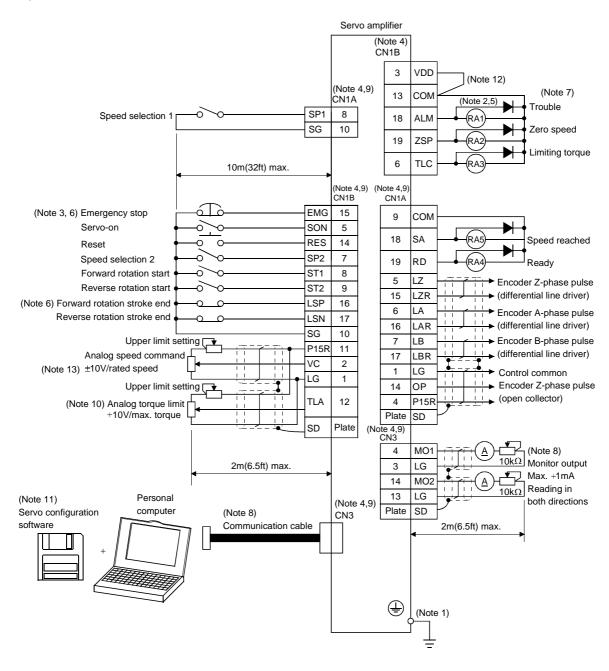

3.1 Standard connection example

POINT

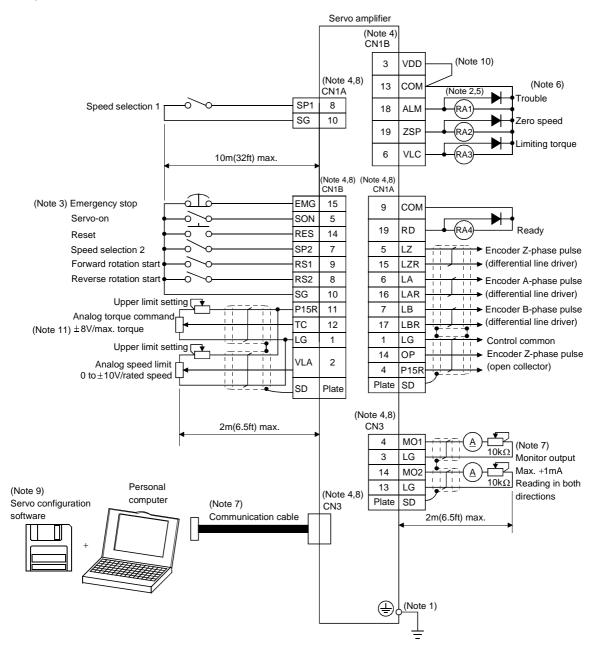
• Refer to Section 3.7.1 for the connection of the power supply system and to Section 3.8 for connection with the servo motor.


3.1.1 Position control mode

(1) FX-10GM

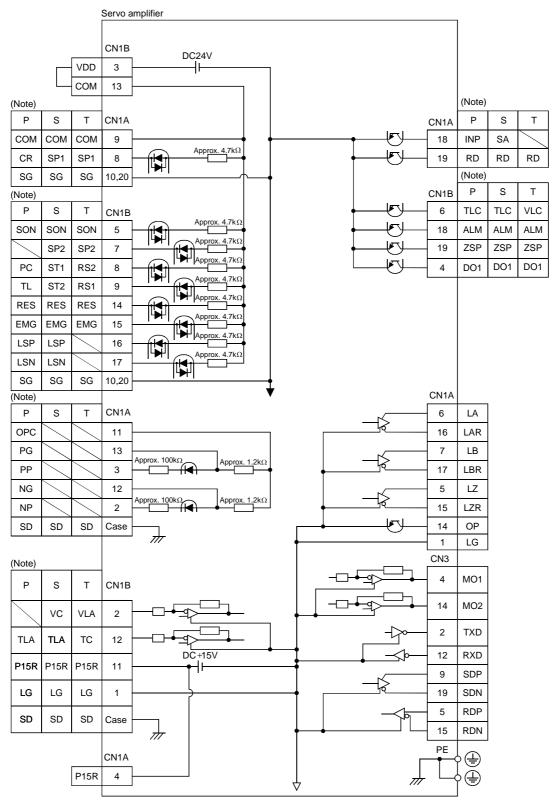

- Note: 1. To prevent an electric shock, always connect the protective earth (PE) terminal (terminal marked (a)) of the servo amplifier to the protective earth (PE) of the control box.
 - 2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will be faulty and will not output signals, disabling the emergency stop and other protective circuits.
 - 3. The emergency stop switch (normally closed contact) must be installed.
 - 4. CN1A, CN1B, CN2 and CN3 have the same shape. Wrong connection of the connectors will lead to a fault.
 - 5. The sum of currents that flow in the external relays should be 80mA max. If it exceeds 80mA, supply interface power from external. (Refer to Section 3.6.2)
 - 6. When starting operation, always connect the emergency stop signal (EMG) and forward/reverse rotation stroke end signal (LSN/LSP) with SG. (Normally closed contacts)
 - 7. Trouble (ALM) is connected with COM in normal alarm-free condition. When this signal is switched off (at occurrence of an alarm), the output of the controller should be stopped by the sequence program.
 - 8. When connecting the personal computer together with monitor outputs 1, 2, use the maintenance junction card (MR-J2CN3TM). (Refer to Section 13.1.4)
 - 9. The pins with the same signal name are connected in the servo amplifier.
 - 10. This length applies to the command pulse train input in the opencollector system. It is 10m (32ft) or less in the differential line driver system.
 - 11. Use MRZJW3-SETUP 121E.
 - 12. When using the internal power supply (VDD), always connect VDD-COM. Do not connect them when supplying external power. Refer to Section 3.6.2.
 - 13. Connect to CN1A-10 when using the junction terminal block (MR-TB20).

(2) AD75P□(A1SD75P□)


- Note: 1. To prevent an electric shock, always connect the protective earth (PE) terminal (terminal marked (a)) of the servo amplifier to the protective earth (PE) of the control box.
 - 2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will be faulty and will not output signals, disabling the emergency stop and other protective circuits.
 - 3. The emergency stop switch (normally closed contact) must be installed.
 - 4. CN1A, CN1B, CN2 and CN3 have the same shape. Wrong connection of the connectors will lead to a fault.
 - 5. The sum of currents that flow in the external relays should be 80mA max. If it exceeds 80mA, supply interface power from external.(Refer to Section 3.6.2)
 - 6. When starting operation, always connect the emergency stop signal (EMG) and forward/reverse rotation stroke end signal (LSN/LSP) with SG. (Normally closed contacts)
 - 7. Trouble (ALM) is connected with COM in normal alarm-free condition. When this signal is switched off (at occurrence of an alarm), the output of the controller should be stopped by the sequence program.
 - 8. When connecting the personal computer together with monitor outputs 1, 2, use the maintenance junction card (MR-J2CN3TM). (Refer to Section 13.1.4)
 - 9. The pins with the same signal name are connected in the servo amplifier.
 - 10. This length applies to the command pulse train input in the differential line driver system. It is 2m (6.5ft) or less in the opencollector system.
 - 11. Use MRZJW3-SETUP 121E.
 - 12. When using the internal power supply (VDD), always connect VDD-COM. Do not connect them when supplying external power. Refer to Section 3.6.2.
 - 13. Connect LG and pulse output COM to increase noise immunity.

3.1.2 Speed control mode

- Note: 1. To prevent an electric shock, always connect the protective earth (PE) terminal (terminal marked \oplus) of the servo amplifier to the protective earth (PE) of the control box.
 - 2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will be faulty and will not output signals, disabling the emergency stop and other protective circuits.
 - 3. The emergency stop switch (normally closed contact) must be installed.
 - 4. CN1A, CN1B, CN2 and CN3 have the same shape. Wrong connection of the connectors will lead to a fault.
 - 5. The sum of currents that flow in the external relays should be 80mA max. If it exceeds 80mA, supply interface power from external.(Refer to Section 3.6.2)
 - 6. When starting operation, always connect the emergency stop signal (EMG) and forward/reverse rotation stroke end signal (LSN/LSP) with SG. (Normally closed contacts)
 - 7. Trouble (ALM) is connected with COM in normal alarm-free condition.
 - 8. When connecting the personal computer together with monitor outputs 1, 2, use the maintenance junction card (MR-J2CN3TM). (Refer to Section 13.1.4)
 - 9. The pins with the same signal name are connected in the servo amplifier.
 - 10. By setting parameters No.43 to 48 to make TL available, TLA can be used.
 - 11. Use MRZJW3-SETUP 121E.
 - 12. When using the internal power supply (VDD), always connect VDD-COM. Do not connect them when supplying external power. Refer to Section 3.6.2.
 - 13. Use an external power supply when inputting a negative voltage.

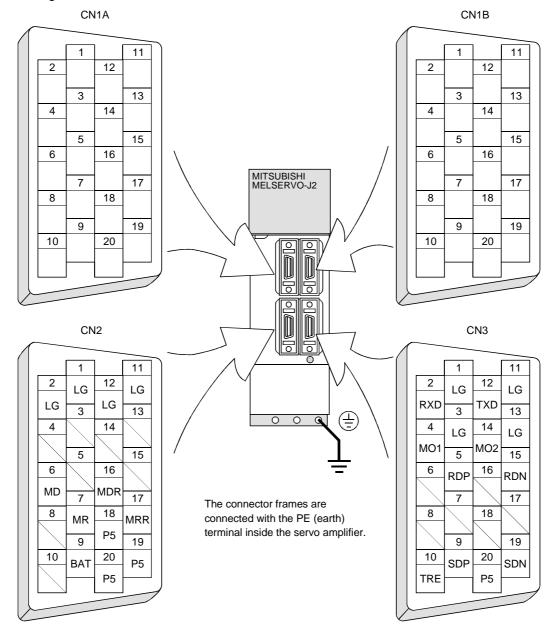

3.1.3 Torque control mode

- Note: 1. To prevent an electric shock, always connect the protective earth (PE) terminal of the (terminal marked ⓐ) servo amplifier to the protective earth (PE) of the control box.
 - 2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will be faulty and will not output signals, disabling the emergency stop and other protective circuits.
 - 3. The emergency stop switch(normally closed contact) must be installed.
 - 4. CN1A, CN1B, CN2 and CN3 have the same shape. Wrong connection of the connectors will lead to a fault.
 - 5. The sum of currents that flow in the external relays should be 80mA max. If it exceeds 80mA, supply interface power from external. (Refer to Section 3.6.2)
 - 6. Trouble (ALM) is connected with COM in normal alarm-free condition.
 - 7. When connecting the personal computer together with monitor outputs 1, 2, use the maintenance junction card (MR-J2CN3TM). (Refer to Section 13.1.4)
 - 8. The pins with the same signal name are connected in the servo amplifier.
 - 9. Use MRZJW3-SETUP 121E.
 - 10. When using the internal power supply (VDD), always connect VDD-COM. Do not connect them when supplying external power. Refer to Section 3.6.2.
 - 11. Use an external power supply when inputting a negative voltage.

3.2 Internal connection diagram of servo amplifier

The following is the internal connection diagram where the signal assignment has been made in the initial status in each control mode.

Note. P: Position control mode, S: Speed control mode, T: Torque control mode


3.3 I/O signals

3.3.1 Connectors and signal arrangements

POINT

- The connector pin-outs shown above are viewed from the cable connector wiring section side.
- Refer to the next page for CN1A and CN1B signal assignment.

(1) Signal arrangement

(2) CN1A and CN1B signal assignment

The signal assignment of connector changes with the control mode as indicated below; For the pins which are given parameter No.s in the related parameter column, their signals can be changed using those parameters.

	D: N	(Note1)I/O		(Not	^{e2)} I/O Signals	in control mod	es		Related
Connector	Pin No.	(10001/1/0	Р	P/S	S	S/T	Т	T/P	parameter
	1		LG	LG	LG	LG	LG	LG	
-	2	I	NP	NP/—				-/NP	
-	3	I	PP	PP/—				—/PP	
	4	/	P15R	P15R/P15R	P15R	P15R	P15R	P15R	
	5	0	LZ	LZ	LZ	LZ	LZ	LZ	
	6	0	LA	LA	LA	LA	LA	LA	
	7	0	LB	LB	LB	LB	LB	LB	
	8	I	CR	CR/SP1	SP1	SP1/SP1	SP1	SP1/CR	No.43 to 48
	9	/	COM	COM	COM	COM	COM	COM	
CNIA	10	/	SG	SG	SG	SG	SG	SG	
CN1A	11	/	OPC	OPC/—				-/OPC	
	12	I	NG	NG/—				-/NG	
	13	I	PG	PG/—				-/PG	
	14	0	OP	OP	OP	OP	OP	OP	
-	15	0	LZR	LZR	LZR	LZR	LZR	LZR	
-	16	0	LAR	LAR	LAR	LAR	LAR	LAR	
-	17	0	LBR	LBR	LBR	LBR	LBR	LBR	
-	18	0	INP	INP/SA	SA	SA/—		-/INP	No.49
-	19	0	RD	RD	RD	RD	RD	RD	No.49
	20	/	SG	SG	SG	SG	SG	SG	
	1		LG	LG	LG	LG	LG	LG	
	2	I		-/VC	VC	VC/VLA	VLA	VLA/—	
	3	/	VDD	VDD	VDD	VDD	VDD	VDD	
	(Note 4)4	0	DO1	DO1	DO1	DO1	DO1	DO1	
	5	I	SON	SON	SON	SON	SON	SON	No.43 to 48
	6	0	TLC	TLC	TLC	TLC/VLC	VLC	VLC/TLC	No.49
	7	I		LOP	SP2	LOP	SP2	LOP	No.43 to 48
	8	I	PC	PC/ST1	ST1	ST1/RS2	RS2	RS2/PC	No.43 to 48
	9	I	TL	TL/ST2	ST2	ST2/RS1	RS1	RS1/TL	No.43 to 48
	10	/	SG	SG	SG	SG	SG	SG	
CN1B	11	/	P15R	P15R	P15R	P15R	P15R	P15R	
	12	I	TLA	(Note3) TLA/TLA	(Note3) TLA	(Note3) TLA/TC	TC	TC/TLA	
•	13		COM	COM	COM	COM	COM	COM	
•	14	I	RES	RES	RES	RES	RES	RES	No.43 to 48
•	15	I	EMG	EMG	EMG	EMG	EMG	EMG	
•	16	I	LSP	LSP	LSP	LSP/—		-/LSP	
•	17	I	LSN	LSN	LSN	LSN/-		-/LSN	
•	18	О	ALM	ALM	ALM	ALM	ALM	ALM	No.49
•	19	О	ZSP	ZSP	ZSP	ZSP	ZSP	ZSP	No.1, 49
Ī	20		SG	SG	SG	SG	SG	SG	

For note, refer to the next page.

- Note: 1. I: Input signal, O: Output signal
 - 2. P : Position control mode, S: Speed control mode, T: Torque control mode, P/S: Position/speed control change mode, S/T: Speed/torque control change mode, T/P: Torque/position control change mode
 - 3. By setting parameters No. 43 to 48 to make TL available, TLA can be used.
 - 4. The signal of CN1A-18 is always output.

(3) Symbols and signal names

Symbol	Signal name	Symbol	Signal name
SON	Servo-on	VLC	Limiting speed
LSP	Forward rotation stroke end	RD	Ready
LSN	Reverse rotation stroke end	ZSP	Zero speed
CR	Clear	INP	In position
SP1	Speed selection 1	SA	Speed reached
SP2	Speed selection 2	ALM	Trouble
PC	Proportion control	WNG	Warning
ST1	Forward rotation start	BWNG	Battery warning
ST2	Reverse rotation start	OP	Encoder Z-phase pulse (open collector)
TL	Torque limit selection	MBR	Electromagnetic brake interlock
RES	Reset	LZ	Encoder Z-phase pulse
EMG	Forced stop	LZR	(differential line driver)
LOP	Control change	LA	Encoder A-phase pulse
VC	Analog speed command	LAR	(differential line driver)
VLA	Analog speed limit	LB	Encoder B-phase pulse
TLA	Analog torque limit	LBR	(differential line driver)
TC	Analog torque command	VDD	I/F internal power supply
RS1	Forward rotation selection	COM	Digital I/F power supply input
RS2	Reverse rotation selection	OPC	Open collector power input
PP		SG	Digital I/F common
NP		P15R	15VDC power supply
PG	Forward/reverse rotation pulse train	LG	Control common
NG		SD	Shield
TLC	Limiting torque		

3.3.2 Signal explanations

For the I/O interfaces (symbols in I/O column in the table), refer to Section 3.6.2.

In the control mode field of the table

- P: Position control mode, S: Speed control mode, T: Torque control mode
- O: Denotes that the signal may be used in the initial setting status.
- \triangle : Denotes that the signal may be used by setting the corresponding parameter among parameters 43 to 49.

The pin No.s in the connector pin No. column are those in the initial status.

(1) Input signals

Signal	Symbol	Connec- tor pin	Functions/Applications	I/O	_	ontr	-
		No.		division	Р	s	Т
Servo-on	SON	CN1B 5	Connect SON-SG to switch on the base circuit and make the servo amplifier ready to operate (servo-on). Disconnect SON-SG to shut off the base circuit and coast the servo motor (servo off). Set "\partial 1" in parameter No. 41 to switch this signal on (keep terminals connected) automatically in the servo amplifier.	DI-1	0	0	0
Reset	RES	CN1B 14	Disconnect RES-SG for more than 50ms to reset the alarm. Some alarms cannot be deactivated by the reset signal. Refer to Section 10.2. Shorting RES-SG in an alarm-free status shuts off the base circuit. The base circuit is not shut off when "□1□□" is set in parameter No. 51.	DI-1	0	0	0
Forward rotation stroke end	LSP	CN1B 16	To start operation, short LSP-SG and/or LSN-SG. Open them to bring the motor to a sudden stop and make it servo-locked. Set "□□□1" in parameter No. 22 to make a slow stop. (Refer to Section 5.2.3.) (Note) Input signals	DI-1	0	0	
Reverse rotation stroke end	LSN	CN1B 17	1 0 0 0 Note. 0: LSP/LSN-SG off (open) 1: SP/LSN-SG on (short) Set parameter No. 41 as indicated below to switch on the signals (keep terminals connected) automatically in the servo amplifier: Parameter No.41 Automatic ON				

		Connec-				I/O		ontr	
Signal	Symbol	tor pin No.			Functions/Applications	division	P	s	Т
Outside torque limit selection	TL	CN1B 9	limit 1 (pa	rameter N ue limit (T		DI-1	0	Δ	///
Internal torque limit selection	TL1		parameter I	r details, refer to (5), Section 3.4.1. hen using this signal, make it usable by making the setting of rameter No. 43 to 48. r details, refer to (5), Section 3.4.1.					Δ
Forward rotation start	ST1	CN1B 8		rt the serve out signals ST1	o motor in any of the following directions: Servo motor starting direction	DI-1		0	
Reverse rotation start	ST2	CN1B 9	0 0 1 1 Note. 0: S'	0 1 0 1 T1/ST2-SG	Stop (servo lock) CCW CW Stop (servo lock) off (open)				
			If both ST1 servo moto	and ST2 ar will be	on (short) are switched on or off during operation, the decelerated to a stop according to the ing and servo-locked.				
Forward rotation selection	RS1	CN1B 9	directions: (Note) Inp	out signals	the following servo motor torque generation Torque generation direction	DI-1			0
			RS2 0	RS1 0	Torque is not generated.				
Reverse rotation selection	RS2	CN1B 8	0	1	Forward rotation in driving mode / reverse rotation in regenerative mode				
			1	0	Reverse rotation in driving mode / forward rotation in regenerative mode				
			1 Note. 0: R 1: R		Torque is not generated. G off (open) G on (short)				

Signal	Symbol	Connector pin			Func	tions//	Applications	I/O division		Contr mod				
Speed selection 1	SP1	CN1A 8	<speed control="" m<br="">Used to select t When using S parameter No.</speed>	he cor SP3,	make		d for operation. sable by making the setting of	DI-1	_	0	0			
Speed selection 2	SP2	CN1B 7	Setting of parameter No. 43 to 48	,	ote) In signals SP2	3	Speed command	DI-1	\setminus	0	0			
Speed selection 3	SP3			5	0	0	Analog speed command (VC)	DI-1	,	Δ				
			When speed selection		0	1	Internal speed command 1 (parameter No. 8)							
			(SP3) is not used		1	0	Internal speed command 2 (parameter No. 9)							
			(initial status)		1	1	Internal speed command 3 (parameter No. 10)							
				0	0	0	Analog speed command (VC)]						
				0	0	1	Internal speed command 1 (parameter No. 8)							
				0	1	0	Internal speed command 2 (parameter No. 9)							
			When speed	0	1	1	Internal speed command 3 (parameter No.10)							
			selection (SP3) is made valid	1	0	0	Internal speed command 4 (parameter No. 72)							
			valiu	1	0	1	Internal speed command 5 (parameter No. 73)							
				1	1	0	Internal speed command 6 (parameter No. 74)							
				1	1	1	Internal speed command 7 (parameter No. 75)							
						parameter No. 4 Setting of	43 to 4	48. ote) In	put	sable by making the setting of				
			parameter No. 43 to 48		signals SP2		Speed limit							
					0	0	Analog speed limit (VLA)							
			When speed selection		0	1	Internal speed command 1 (parameter No. 8)							
			(SP3) is not used		1	0	Internal speed command 2 (parameter No. 9)							
			(initial status)		1	1	Internal speed command 3 (parameter No. 10)							
				0	0	0	Analog speed limit (VLA) Internal speed command 1							
				0	0	1	(parameter No. 8)							
				0	1	0	Internal speed command 2 (parameter No. 9)							
			When speed selection	0	1	1	Internal speed command 3 (parameter No.10)							
			(SP3) is made valid	1	0	0	Internal speed command 4 (parameter No. 72)							
				1	0	1	Internal speed command 5 (parameter No. 73)							
				1	1	0	Internal speed command 6 (parameter No. 74)							
			\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	1	1	Internal speed command 7 (parameter No. 75)							
			Note. 0: SP1/SF 1: SP1/SF											

		Connec-		I/O	C	onti	ol.
Signal	Symbol	tor pin No.	Functions/Applications	division	P	nod S	e T
Proportion control	PC	CN1B 8	Connect PC-SG to switch the speed amplifier from the proportional integral type to the proportional type. If the servo motor at a stop is rotated even one pulse due to any external factor, it generates torque to compensate for a position shift. When the servo motor shaft is to be locked mechanically after positioning completion (stop), switching on the proportion control signal (PC) upon positioning completion will suppress the unnecessary torque generated to compensate for a position shift. When the shaft is to be locked for a long time, switch on the proportion control signal and torque control signal (TL) at the same time to make the torque less than the rated by the analog torque limit.		0		
Emergency stop	EMG	CN1B 15	Disconnect EMG-SG to bring the servo motor to emergency stop state, in which the servo is switched off and the dynamic brake is operated. Connect EMG-SG in the emergency stop state to reset that state.		0	0	0
Clear	CR	CN1A 8	Connect CR-SG to clear the position control counter droop pulses on its leading edge. The pulse width should be 10ms or more. When the parameter No.42 setting is "□□1□", the pulses are always cleared while CR-SG are connected.	DI-1	0		
Electronic gear selection 1	CM1		When using CM1 and CM2, make them usable by the setting of parameters No. 43 to 48. The combination of CM1-SG and CM2-SG gives you a choice of four different electronic gear numerators set in the parameters. CM1 and CM2 cannot be used in the absolute position detection system.	DI-1	Δ		
Electronic gear selection 2	CM2		(Note) Input signals	DI-1	Δ		
Gain changing	CDP		When using this signal, make it usable by the setting of parameter No. 43 to 48. Connect CDP-SG to change the load inertia moment ratio into the parameter No. 61 setting and the gain values into the values multiplied by the parameter No. 62 to 64 settings.	DI-1	Δ	Δ	Δ

Signal	Symbol	Connector pin	Functions/Applications	I/O division	Con mo	de
Control change	LOP	CN1B 7	<position change="" control="" mode="" speed=""> Used to select the control mode in the position/speed control change mode. (Note) LOP</position>	DI-1	Refe Funct App catio	ions/ oli-
			(Note) LOP Control mode 0 Speed 1 Torque Note.0: LOP-SG off (open) 1: LOP-SG on (short) <torque control="" mode="" position=""> Used to select the control mode in the torque/position control change mode. (Note) LOP Control mode 0 Torque 1 Position</torque>			
			Note.0: LOP-SG off (open) 1: LOP-SG on (short)			
Analog torque limit	TLA	CN1B 12	To use this signal in the speed control mode, set any of parameters No. 43 to 48 to make TL available. When the analog torque limit (TLA) is valid, torque is limited in the full servo motor output torque range. Apply 0 to +10VDC across TLA-LG. Connect the positive terminal of the power supply to TLA. Maximum torque is generated at +10V. (Refer to (5) in Section 3.4.1.) Resolution:10bit	Analog input		² //
Analog torque command	TC		Used to control torque in the full servo motor output torque range. Apply 0 to ±8VDC across TC-LG. Maximum torque is generated at ±8V. (Refer to (1) in Section 3.4.3.) The torque generated at ±8V input can be changed using parameter No. 26.	Analog input		0
Analog speed command	VC	CN1B 2	Apply 0 to ±10VDC across VC-LG. Speed set in parameter No. 25 is provided at ±10V. (Refer to (1) in Section 3.4.2.) Resolution:14bit or equivalent	Analog input		
Analog speed limit	VLA		Apply 0 to +10VDC across VLA-LG. Speed set in parameter No. 25 is provided at +10V (Refer to (3) in Section 3.4.3.).	Analog input		0
Forward rotation pulse train Reverse rotation pulse train	PP NP	CN1A 3 CN1A 2	Used to enter a command pulse train. • In the open collector system (max. input frequency 200kpps): Forward rotation pulse train across PP-SG Reverse rotation pulse train across NP-SG	DI-2		
	PG NG	CN1A 13 CN1A 12	In the differential receiver system (max. input frequency 500kpps): Forward rotation pulse train across PG-PP Reverse rotation pulse train across NG-NP The command pulse train form can be changed using parameter No. 21.			

(2) Output signals

Cianal	Course by sale	Connec-	Functions (Applications	I/O		ontr	
Signal	Symbol	tor pin No.	Functions/Applications	division	P	S	Т
Trouble	ALM	CN1B 18	ALM-SG are disconnected when power is switched off or the protective circuit is activated to shut off the base circuit. Without alarm, ALM-SG are connected within 1 after power on.	DO-1	0	0	0
Ready	RD	CN1A 19	RD-SG are connected when the servo is switched on and the servo amplifier is ready to operate.	DO-1	0	0	0
In position	INP	CN1A 18	INP-SG are connected when the number of droop pulses is in the preset in-position range. The in-position range can be changed using parameter No. 5. When the in-position range is increased, INP-SG may be kept connected during low-speed rotation.	DO-1	0		
Speed reached	SA		SA-SG are connected when the servo motor speed has nearly reached the preset speed. When the preset speed is 50r/min or less, SA-SG are kept connected.	DO-1		0	
Limiting speed	VLC	CN1B 6	VLC-SG are connected when speed reaches the value set to any of the internal speed limits 1 to 7 (parameters No. 8 to 10, 72 to 75) or the analog speed limit (VLA) in the torque control mode. They are disconnected when the servo-on signal (SON) switches off.	DO-1	\setminus	\setminus	0
Limiting torque	TLC		TLC-SG are connected when the torque generated reaches the value set to the internal torque limit 1 (parameter No. 28) or analog torque limit (TLA). They are disconnected when the servo-on signal (SON) switches off.	DO-1	0	0	
Zero speed	ZSP	CN1B 19	ZSP-SG are connected when the servo motor speed is zero speed (50r/min) or less. Zero speed can be changed using parameter No. 24.	DO-1	0	0	0
Electromagnetic brake interlock	MBR	CN1B 19	Set "\(\subset \subse	DO-1	Δ	Δ	Δ
Warning	WNG		To use this signal, assign the connector pin for output using parameter No.49. The old signal before assignment will be unusable. When warning has occurred, WNG-SG are connected. When there is no warning, WNG-SG are disconnected within 1 second after power-on.	DO-1	\triangle	Δ	Δ
Battery warning	BWNG		To use this signal, assign the connector pin for output using parameter No.49. The old signal before assignment will be unusable. BWNG-SG are connected when battery cable breakage warning (AL.92) or battery warning (AL.9F) has occurred. When there is no battery warning, BWNG-SG are disconnected within 1 second after power-on.	DO-1		Δ	Δ

Signal	Symbol	Connec- tor pin			Fun	ctions/App	plications	I/O		onti nod	
O.g.i.d.i	<i>-</i>	No.						division	Р	s	Т
Alarm code	ACD 0	CN1A 19 CN1A	This sign	al is ou	tput wh	en an ala	arameter No.49. arm occurs. When there is no RD, INP, SA, ZSP) are output.	DO-1	Δ	Δ	Δ
	11021	18		-	-	_	isted below:				
	ACD 2	CN1B		e) Alarm		inies are i	Below.				
		19	CN1B 19 Pin	CN1A 18 Pin	CN1A 19 Pin	Alarm display	Name				
			19 FIII	10 FIII	19 FIII	88888	Watchdog				
						AL.12	Memory error 1				
						AL.13	Clock error				
						AL.15	Memory error 2				
				_	_	AL.17	Board error				
			0	0	0	AL.19	Memory error 3				
						AL.37	Parameter error				
						AL.8A	Serial communication timeout				
						AL.8E	Serial communication error				
			0			AL.30	Regenerative error				
			0	0	1	AL.33	Overvoltage				
			0	1	0	AL.10	Undervoltage				
						AL.45	Main circuit device				
						AL.46	Servo motor overheat				
			0	1	1	AL.50	Overload 1				
						AL.51	Overload 2				
			1			AL.24	Main circuit error				
			1	0	0	AL.32	Overcurrent				
						AL.31	Overspeed				
			1	0	1	AL.35	Command pulse frequency alarm				
						AL.52	Error excessive				
						AL.16	Encoder error 1				
						AL.1A	Monitor combination error				
			1	1	0	AL.20	Encoder error 2				
						AL.25	Absolute position erase				
			Note.0: 1	Pin-SG (off (open)					
					on (short						

Signal	Symbol	Connec- tor pin	Functions/Applications	I/O	_	ontr node	-
J.g.ia.	Cy20.	No.	, areas of persons	division	Р	S	Т
Encoder Z-phase	OP	CN1A	Outputs the zero-point signal of the encoder. One pulse is output	DO-2	0	0	0
pulse		14	per servo motor revolution. OP and LG are connected when the				
(Open collector)			zero-point position is reached. (Negative logic)				
			The minimum pulse width is about $400\mu s$. For home position				
			return using this pulse, set the creep speed to 100r/min. or less.				
Encoder A-phase	LA	CN1A	Outputs pulses per servo motor revolution set in parameter No.	DO-2	0	0	0
pulse		6	27 in the differential line driver system. In CCW rotation of the				
(Differential line	LAR	CN1A	servo motor, the encoder B-phase pulse lags the encoder A-phase				
driver)		16	pulse by a phase angle of $\pi/2$.				
Encoder B-phase	LB	CN1A	The relationships between rotation direction and phase difference				
pulse		7	of the A- and B-phase pulses can be changed using parameter No.				
(Differential line	LBR	CN1A	54.				
driver)		17					
Encoder Z-phase	LZ	CN1A	The same signal as OP is output in the differential line driver	DO-2	0	0	0
pulse		5	system.				
(Differential line	LZR	CN1A					
driver)		15					
Analog monitor 1	MO1	CN3	Used to output the data set in parameter No.17 to across MO1-LG	Analog	0	0	0
		4	in terms of voltage. Resolution 10 bits	output			
Analog monitor 2	MO2	CN3	Used to output the data set in parameter No.17 to across MO2-LG	Analog	0	0	0
		14	in terms of voltage. Resolution 10 bits	output			

(3) Communication

POINT

• Refer to Chapter 14 for the communication function.

Signal	Symbol	Connec- tor pin	Functions/Applications	I/O division		ontr node	-
		No.		aiviolon	Р	S	T
RS-422 I/F	SDP	CN3	RS-485 and RS-232C functions cannot be used together.	\	0	О	0
		9	Choose either one in parameter No. 16.				
	SDN	CN3					
		19		\			
	RDP	CN3		\			
		5		\			
	RDN	CN3		\			
		15		\			
RS-422	TRE	CN3	Termination resistor connection terminal of RS-422 interface.		0	0	0
termination		10	When the servo amplifier is the termination axis, connect this				
			terminal to RDN (CN3-15).				
RS-232C I/F	RXD	CN3	RS-485 and RS-232C functions cannot be used together.		0	0	0
		2	Choose either one in parameter No. 16.				
	TXD	CN3					
		12					

(4) Power supply

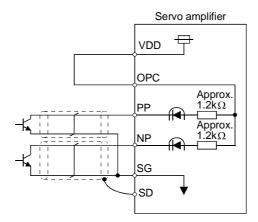
		Connec-		I/O		ontr	
Signal	Symbol	tor pin No.	Functions/Applications	division	P	S	Т
I/F internal power supply	VDD	CN1B 3	Used to output $+24V\pm10\%$ to across VDD-SG. When using this power supply for digital interface, connect it with COM. Permissible current: $80mA$		0	0	0
Digital I/F power supply input	COM	CN1A 9 CN1B 13	Used to input 24VDC for input interface. Connect the positive terminal of the 24VDC external power supply. $24VDC\pm10\%$		0	0	0
Open collector power input	OPC	CN1A 11	When inputting a pulse train in the open collector system, supply this terminal with the positive (+) power of 24VDC.		0	0	0
Digital I/F common	SG	CN1A 10 20 CN1B 10 20	Common terminal for input signals such as SON and EMG. Pins are connected internally. Separated from LG.		0	0	0
15VDC power supply	P15R	CN1A 4 CN1B 11	Outputs 15VDC to across P15R-LG. Available as power for TC, TLA, VC, VLA. Permissible current: 30mA		0	0	0
Control common	LG	CN1A 1 CN1B 1 CN3 1 3 5 11 13	Common terminal for TLA, TC, VC, VLA, FPA, FPB, OP ,MO1, MO2 and P15R. Pins are connected internally.		0	0	0
Shield	SD	Plate	Connect the external conductor of the shield cable.		0	0	0

3.4 Detailed description of the signals

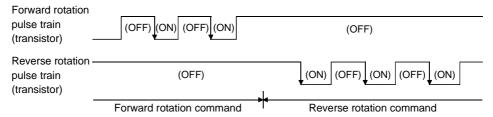
3.4.1 Position control mode

(1) Pulse train input

(a) Input pulse waveform selection


Encoder pulses may be input in any of three different forms, for which positive or negative logic can be chosen. Set the command pulse train form in parameter No. 21.

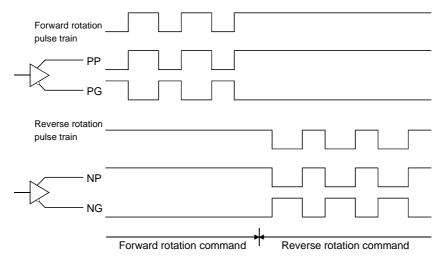
Arrow
☐ or ☐ in the table indicates the timing of importing a pulse train.


A- and B-phase pulse trains are imported after they have been multiplied by 4.

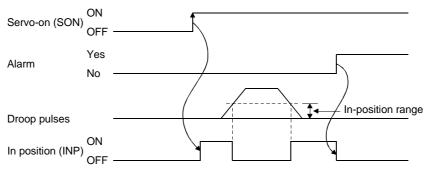
	Pulse train form	Forward rotation command	Reverse rotation command	Parameter No. 21 (Command pulse train)
	Forward rotation pulse train Reverse rotation pulse train	PP J.J.J.J.		0010
Negative logic	Pulse train + sign	PP J.	н	0011
I	A-phase pulse train B-phase pulse train	PP T T T		0012
	Forward rotation pulse train Reverse rotation pulse train	PP TITIT		0000
Positive logic	Pulse train + sign	PP TTTT		0001
	A-phase pulse train B-phase pulse train	NP NP		0002

- (b) Connections and waveforms
 - 1) Open collector system Connect as shown below:

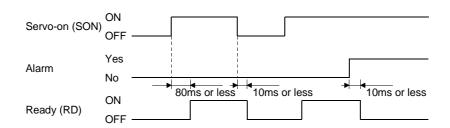
The explanation assumes that the input waveform has been set to the negative logic and forward and reverse rotation pulse trains (parameter No.21 has been set to 0010). The waveforms in the table in (a), (1) of this section are voltage waveforms of PP and NP based on SG. Their relationships with transistor ON/OFF are as follows:



2) Differential line driver system Connect as shown below:


The explanation assumes that the input waveform has been set to the negative logic and forward and reverse rotation pulse trains (parameter No.21 has been set to 0010).

For the differential line driver, the waveforms in the table in (a), (1) of this section are as follows. The waveforms of PP, PG, NP and NG are based on that of the ground of the differential line driver.



(2) In-position (INP)

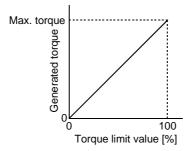
PF-SG are connected when the number of droop pulses in the deviation counter falls within the preset in-position range (parameter No. 5). INP-SG may remain connected when low-speed operation is performed with a large value set as the in-position range.

(3) Ready (RD)

(4) Electronic gear switching

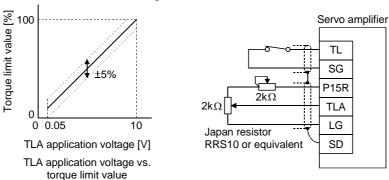
The combination of CM1-SG and CM2-SG gives you a choice of four different electronic gear numerators set in the parameters.

As soon as CM1/CM2 is turned ON or OFF, the denominator of the electronic gear changes. Therefore, if any shock occurs at this change, use position smoothing (parameter No. 7) to relieve shock.


(Note) Extern	al input signal	Electronic con decomination	
CM2 CM1		Electronic gear denomination	
0	0	Parameter No. 3 (CMX)	
0	1	Parameter No. 69 (CM2)	
1	0	Parameter No. 70 (CM3)	
1	1	Parameter No. 71 (CM4)	

Note.0: CM1/CM2-SG off(open)
1: CM1/CM2-SG on(short)

(5) Torque limit


(a) Torque limit and generated torque

By setting parameter No. 28 (internal torque limit 1), torque is always limited to the maximum value during operation. A relationship between the limit value and servo motor-generated torque is shown below.

A relationship between the applied voltage of the analog torque limit (TLA) and the torque limit value of the servo motor is shown below. Generated torque limit values will vary about 5% relative to the voltage depending on products.

At the voltage of less than 0.05V, generated torque may vary as it may not be limited sufficiently. Therefore, use this function at the voltage of 0.05V or more.

(b) Torque limit value selection

Choose the torque limit made valid by the internal torque limit value 1 (parameter No. 28) using the external torque limit selection (TL) or the torque limit made valid by the analog torque limit (TLA) as indicated below.

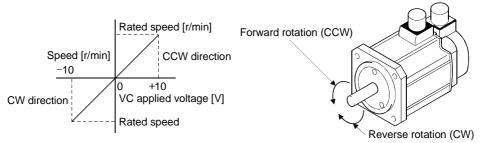
When internal torque limit selection (TL1) is made usable by parameter No. 43 to 48, internal torque limit 2 (parameter No. 76) can be selected. However, if the parameter No. 28 value is less than the limit value selected by TL/TL1, the parameter No. 28 value is made valid.

(Note) External input signals		Torque limit value made valid	
TL1	TL	Torque ill'illi value made valid	
0	0	Internal torque limit value 1 (parameter No. 28)	
0	1	TLA > Parameter No. 28: Parameter No. 28 TLA < Parameter No. 28: TLA	
1	0	Parameter No. 76 > Parameter No. 28: Parameter No. 28 Parameter No. 76 < Parameter No. 28: Parameter No. 76	
1	1	TLA > Parameter No. 76: Parameter No. 76 TLA < Parameter No. 76: TLA	

Note.0: TL/TL1-SG off (open)
1: TL/TL1-SG on (short)

(c) Limiting torque (TLC)

TLC-SG are connected when the torque generated by the servo motor reaches the torque set to internal torque limit value 1 or analog torque limit.

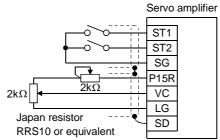

3.4.2 Speed control mode

(1) Speed setting

(a) Speed command and speed

The servo motor is run at the speeds set in the parameters or at the speed set in the applied voltage of the analog speed command (VC). A relationship between the analog speed command (VC) applied voltage and the servo motor speed is shown below:

The maximum speed is achieved at ± 10 V. The speed at ± 10 V can be changed using parameter No. 25.



The following table indicates the rotation direction according to forward rotation start (ST1) and reverse rotation start (ST2) combination:

(Note) Extern	al input signals	Rotation direction				
CTO	CT4		Internal speed			
ST2	ST1	+ Polarity	0V	- Polarity	commands	
0	0	Stop	Stop	Stop	Stop	
0	U	(Servo lock)	(Servo lock)	(Servo lock)	(Servo lock)	
0	1	CCW	Stop	CW	CCW	
1	0	CW	(No servo lock)	CCW	CW	
1	1	Stop	Stop	Stop	Stop	
1	1	(Servo lock)	(Servo lock)	(Servo lock)	(Servo lock)	

Note.0: ST1/ST2-SG off (open) 1: ST1/ST2-SG on (short)

The forward rotation start signal (ST1) and reverse rotation start signal (ST2) can be assigned to any pins of the connector CN1A, CN1B using parameters No. 43 to 48. Generally, make connection as shown below:

(b) Speed selection 1 (SP1), speed selection 2 (SP2) and speed command value

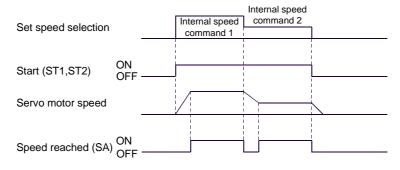
Choose any of the speed settings made by the internal speed commands 1 to 3 using speed selection
1 (SP1) and speed selection 2 (SP2) or the speed setting made by the analog speed command (VC).

(Note) Externa	l input signals	Consolination of the contract	
SP2 SP1		Speed command value	
0	0	Analog speed command (VC)	
0	1	Internal speed command 1 (parameter No. 8)	
1	0	Internal speed command 2 (parameter No. 9)	
1	1	Internal speed command 3 (parameter No. 10)	

Note.0: SP1/SP2-SG off (open) 1: SP1/SP2-SG on (short)

By making speed selection 3 (SP3) usable by setting of parameter No. 43 to 48, you can choose the speed command values of analog speed command (VC) and internal speed commands 1 to 7.

(Note) Ex	kternal inpu	ut signals	Consort someone division	
SP3	SP2	SP1	Speed command value	
0	0	0	Analog speed command (VC)	
0	0	1	Internal speed command 1 (parameter No. 8)	
0	1	0	Internal speed command 2 (parameter No. 9)	
0	1	1	Internal speed command 3 (parameter No. 10)	
1	0	0	Internal speed command 4 (parameter No. 72)	
1	0	1	Internal speed command 5 (parameter No. 73)	
1	1	0	Internal speed command 6 (parameter No. 74)	
1	1	1	Internal speed command 7 (parameter No. 75)	


 $Note.0: SP1/SP2/SP3-SG\ off\ (open) \\ 1: SP1/SP2/SP3-SG\ on\ (short)$

The speed may be changed during rotation. In this case, the values set in parameters No. 11 and 12 are used for acceleration/deceleration.

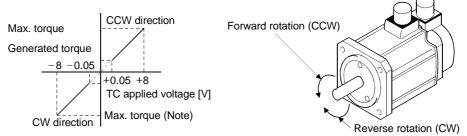
When the speed has been specified under any internal speed command, it does not vary due to the ambient temperature.

(2) Speed reached (SA)

SA-SG are connected when the servo motor speed nearly reaches the speed set to the internal speed command or analog speed command.

(3) Torque limit

As in Section 3.4.1 (5).

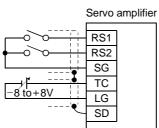

3.4.3 Torque control mode

(1) Torque control

(a) Torque command and generated torque

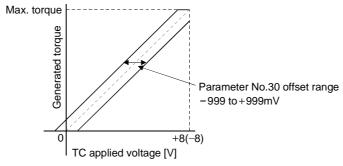
A relationship between the applied voltage of the analog torque command (TC) and the torque generated by the servo motor is shown below.

The maximum torque is generated at $\pm 8V$. Note that the torque generated at $\pm 8V$ input can be changed with parameter No. 26.


Generated torque limit values will vary about 5% relative to the voltage depending on products. Also the generated torque may vary if the voltage is low (-0.05 to +0.05 V) and the actual speed is close to the limit value. In such a case, increase the speed limit value.

The following table indicates the torque generation directions determined by the forward rotation selection (RS1) and reverse rotation selection (RS2) when the analog torque command (TC) is used.

(Note) External input signals		Rotation direction				
RS2	RS1	Torque control command (TC)				
R52	KSI	+ Polarity	0V	Polarity		
0	0	Torque is not generated.		Torque is not generated.		
0	1	CCW (reverse rotation in driving mode/forward rotation in regenerative mode)	Torque is not	CW (forward rotation in driving mode/reverse rotation in regenerative mode)		
1	0	CW (forward rotation in driving mode/reverse rotation in regenerative mode)	generated.	CCW (reverse rotation in driving mode/forward rotation in regenerative mode)		
1	1	Torque is not generated.		Torque is not generated.		


Note. 0: RS1/RS2-SG off (open) 1: RS1/RS2-SG on (short)

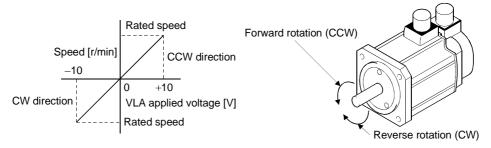
Generally, make connection as shown below:

(b) Analog torque command offset

Using parameter No. 30, the offset voltage of -999 to +999mV can be added to the TC applied voltage as shown below.

(2) Torque limit

By setting parameter No. 28 (internal torque limit 1), torque is always limited to the maximum value during operation. A relationship between limit value and servo motor-generated torque is as in (5) in section 3.4.1. Note that the analog torque limit (TLA) is unavailable.

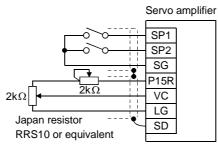

(3) Speed limit

(a) Speed limit value and speed

The speed is limited to the values set in parameters No. 8 to 10, 72 to 75 (internal speed limits 1 to 7) or the value set in the applied voltage of the analog speed limit (VLA).

A relationship between the analog speed limit (VLA) applied voltage and the servo motor speed is shown below.

When the motor speed reaches the speed limit value, torque control may become unstable. Make the set value more than 100r/m greater than the desired speed limit value.



The following table indicates the limit direction according to forward rotation selection (RS1) and reverse rotation selection (RS2) combination:

(Note) External input signals		Speed limit direction			
RS1	RS2	Analog spee	Internal speed		
KSI	R52	+ Polarity	Polarity	commands	
1	0	CCW	CW	CCW	
0	1	CW	CCW	CW	

Note.0: RS1/RS2-SG off (open) 1: RS1/RS2-SG on (short)

Generally, make connection as shown below:

(b) Speed selection 1(SP1)/speed selection 2(SP2)/speed selection 3(SP3) and speed limit values Choose any of the speed settings made by the internal speed limits 1 to 7 using speed selection 1(SP1), speed selection 2(SP2) and speed selection 3(SP3) or the speed setting made by the speed limit command (VLA), as indicated below.

Setting of parameter	(Note) Input signals		gnals	On and Parthurshare
No. 43 to 48	SP3	SP2	SP1	Speed limit value
117 1 1		0	0	Analog speed command (VLA)
When speed selection		0	1	Internal speed command 1 (parameter No. 8)
(SP3) is not used (initial status)		1	0	Internal speed command 2 (parameter No. 9)
(IIIItiai Status)		1	1	Internal speed command 3 (parameter No. 10)
	0	0	0	Analog speed command (VLA)
	0	0	1	Internal speed command 1 (parameter No. 8)
	0	1	0	Internal speed command 2 (parameter No. 9)
When speed selection	0	1	1	Internal speed command 3 (parameter No. 10)
(SP3) is made valid	1	0	0	Internal speed command 4 (parameter No. 72)
	1	0	1	Internal speed command 5 (parameter No. 73)
	1	1	0	Internal speed command 6 (parameter No. 74)
	1	1	1	Internal speed command 7 (parameter No. 75)

Note.0: SP1/SP2/SP3-SG off (open) 1: SP1/SP2/SP3-SG on (short)

When the internal speed limits 1 to 7 are used to command the speed, the speed does not vary with the ambient temperature.

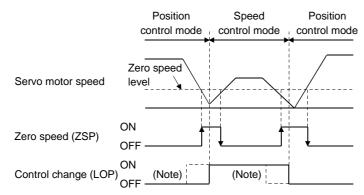
(c) Limiting speed (VLC)

VLC-SG are connected when the servo motor speed reaches the limit speed set to any of the internal speed limits 1 to 3 or analog speed limit.

3.4.4 Position/speed control change mode

Set "0001" in parameter No. 0 to switch to the position/speed control change mode. This function is not available in the absolute position detection system.

(1) Control change (LOP)


Use control change (LOP) to switch between the position control mode and the speed control mode from an external contact. Relationships between LOP-SG status and control modes are indicated below:

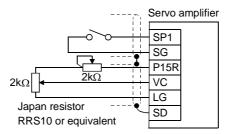
(Note) LOP	Servo control mode	
0 Position control mode		
1	Speed control mode	

Note.0: LOP-SG off (open) 1: LOP-SG on (short)

The control mode may be changed in the zero-speed status. To ensure safety, change control after the servo motor has stopped. When position control mode is changed to speed control mode, droop pulses are reset.

If the signal has been switched on-off at the speed higher than the zero speed and the speed is then reduced to the zero speed or less, the control mode cannot be changed. A change timing chart is shown below:

Note: When ZSP is not on, control cannot be changed if LOP is switched on-off. If ZSP switches on after that, control cannot not be changed.


(2) Torque limit in position control mode As in Section 3.4.1 (5).

(3) Speed setting in speed control mode

(a) Speed command and speed

The servo motor is run at the speed set in parameter No. 8 (internal speed command 1) or at the speed set in the applied voltage of the analog speed command (VC). A relationship between analog speed command (VC) applied voltage and servo motor speed and the rotation directions determined by the forward rotation start signal (ST1) and reverse rotation start signal (ST2) are as in (a), (1) in section 3.4.2.

Generally, make connection as shown below:

(b) Speed selection 1 (SP1) and speed command value

Use speed selection 1 (SP1) to select between the speed set by the internal speed command 1 and the speed set by the analog speed command (VC) as indicated in the following table:

(Note) External input signals	Speed command value	
SP1		
0	Analog speed command (VC)	
1	Internal speed command 1 (parameter No. 8)	

Note.0: SP1-SG off (open) 1: SP1-SG on (short)

The speed may also be changed during rotation. In this case, it is increased or decreased according to the value set in parameter No. 11 or 12.

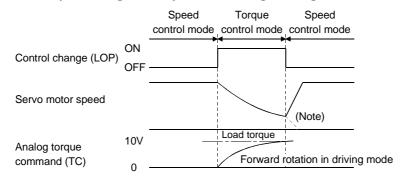
When the internal speed command 1 is used to command the speed, the speed does not vary with the ambient temperature.

(c) Speed reached (SA)

As in Section 3.4.2 (2).

3.4.5 Speed/torque control change mode

Set "0003" in parameter No. 0 to switch to the speed/torque control change mode.


(1) Control change (LOP)

Use control change (LOP) to switch between the speed control mode and the torque control mode from an external contact. Relationships between LOP-SG status and control modes are indicated below:

(Note) LOP	Servo control mode
0	Speed control mode
1	Torque control mode

Note.0: LOP-SG off (open)
1: LOP-SG on (short)

The control mode may be changed at any time. A change timing chart is shown below:

Note: When the start signal (ST1·ST2) is switched off as soon as the mode is changed to speed control, the servo motor comes to a stop according to the deceleration time constant.

- (2) Speed setting in speed control mode As in Section 3.4.2 (1).
- (3) Torque limit in speed control mode As in Section 3.4.1 (5).

(4) Speed limit in torque control mode

(a) Speed limit value and speed

The speed is limited to the limit value set in parameter No. 8 (internal speed limit 1) or the value set in the applied voltage of the analog speed limit (VLA). A relationship between the analog speed limit (VLA) applied voltage and the servo motor speed is as in (a), (3) in section 3.4.3. Generally, make connection as shown below:

Servo amplifier

SP1
SG
P15R
2kΩ
VLA

RRS10 or equivalent

Japan resistor

(b) Speed selection 1 (SP1) and speed limit value

Use speed selection 1 (SP1) to select between the speed set by the internal speed command 1 and the speed set by the analog speed limit (VLA) as indicated in the following table:

LG

SD

(Note) External input signals	Consideration of the constant	
SP1	Speed command value	
0	Analog speed limit (VLA)	
1	Internal speed limit 1 (parameter No. 8)	

Note.0: SP1-SG off (open) 1: SP1-SG on (short)

When the internal speed limit 1 is used to command the speed, the speed does not vary with the ambient temperature.

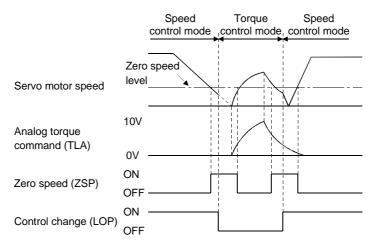
- (c) Limiting speed (VLC)
 As in (c), (3) in section 3.4.3.
- (5) Torque control in torque control mode As in Section 3.4.3 (1).
- (6) Torque limit in torque control mode As in Section 3.4.3 (2).

3.4.6 Torque/position control change mode

Set "0005" in parameter No. 0 to switch to the torque/position control change mode.

(1) Control change (LOP)

Use control change (LOP) to switch between the torque control mode and the position control mode from an external contact. Relationships between LOP-SG status and control modes are indicated below:

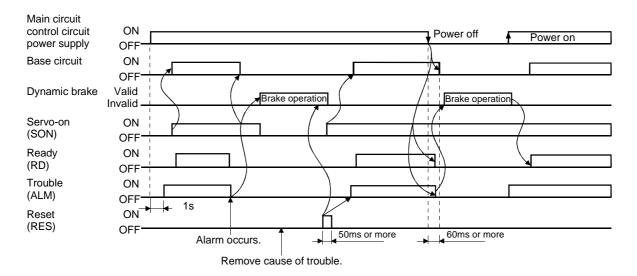

(Note) LOP	Servo control mode	
0	Torque control mode	
1	Position control mode	

Note.0: LOP-SG off (open)
1: LOP-SG on (short)

The control mode may be changed in the zero-speed status.

To ensure safety, change control after the servo motor has stopped. When position control mode is changed to torque control mode, droop pulses are reset.

If the signal has been switched on-off at the speed higher than the zero speed and the speed is then reduced to the zero speed or less, the control mode cannot be changed. A change timing chart is shown below:


- (2) Speed limit in torque control mode As in Section 3.4.3 (3).
- (3) Torque control in torque control mode As in Section 3.4.3 (1).
- (4) Torque limit in torque control mode As in Section 3.4.3 (2).
- (5) Torque limit in position control mode As in Section 3.4.1 (5).

3.5 Alarm occurrence timing chart

• When an alarm has occurred, remove its cause, make sure that the operation signal is not being input, ensure safety, and reset the alarm before restarting operation.

When an alarm occurs in the servo amplifier, the base circuit is shut off and the servo motor is coated to a stop. Switch off the main circuit power supply in the external sequence. To reset the alarm, switch the control circuit power supply from off to on, press the "SET" button on the current alarm screen, or turn the reset signal (RES) from off to on. However, the alarm cannot be reset unless its cause is removed.

(1) Overcurrent, overload 1 or overload 2

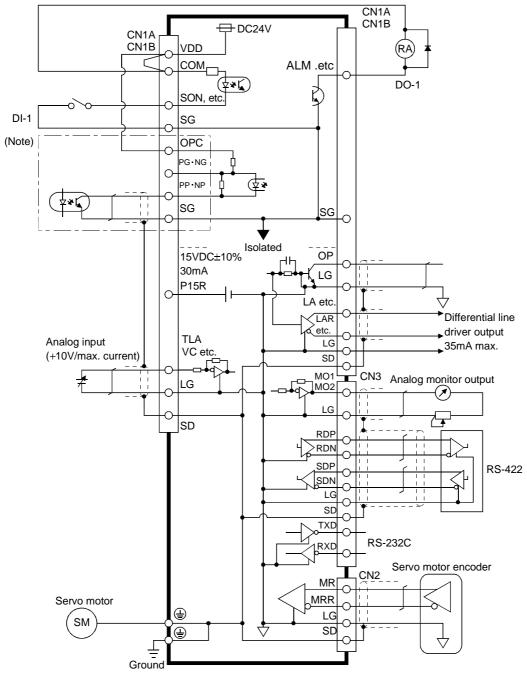
If operation is repeated by switching control circuit power off, then on to reset the overcurrent (AL.32), overload 1 (AL.50) or overload 2 (AL.51) alarm after its occurrence, without removing its cause, the servo amplifier and servo motor may become faulty due to temperature rise. Securely remove the cause of the alarm and also allow about 30 minutes for cooling before resuming operation.

(2) Regenerative alarm

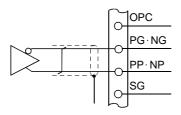
If operation is repeated by switching control circuit power off, then on to reset the regenerative (AL.30) alarm after its occurrence, the external regenerative brake resistor will generate heat, resulting in an accident.

(3) Instantaneous power failure

Undervoltage (AL.10) occurs if power is restored after a 60ms or longer power failure of the control power supply or after a drop of the bus voltage to or below 200VDC. If the power failure persists further, the control power switches off. When the power failure is reset in this state, the alarm is reset and the servo motor will start suddenly if the servo-on signal (SON) is on. To prevent hazard, make up a sequence which will switch off the servo-on signal (SON) if an alarm occurs.


(4) In position control mode (incremental)

When an alarm occurs, the home position is lost. When resuming operation after deactivating the alarm, make a home position return.

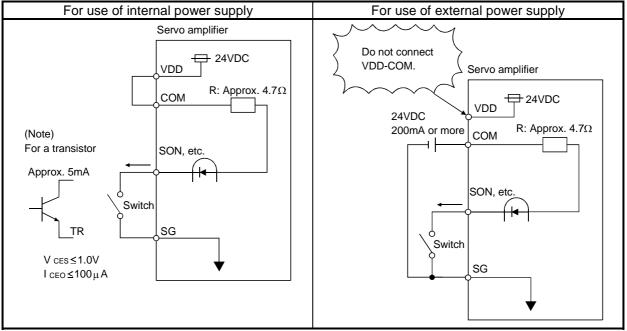

3.6 Interfaces

3.6.1 Common line

The following diagram shows the power supply and its common line.

Note: For the open collection pulse train input. Make the following connection for the different line driver pulse train input.

3.6.2 Detailed description of the interfaces

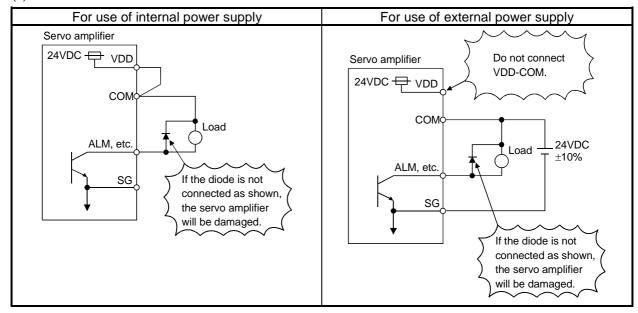

This section gives the details of the I/O signal interfaces (refer to I/O Division in the table) indicated in Sections 3.3.2.

Refer to this section and connect the interfaces with the external equipment.

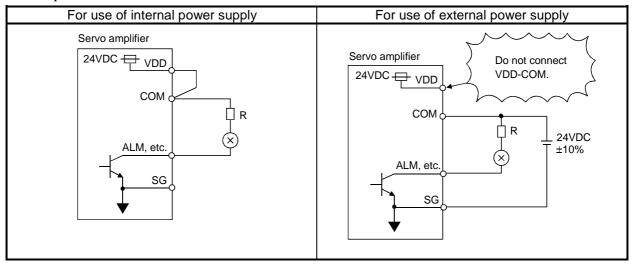
(1) Digital input interface DI-1

Give a signal with a relay or open collector transistor.

Source input is also possible. Refer to (7) in this section.

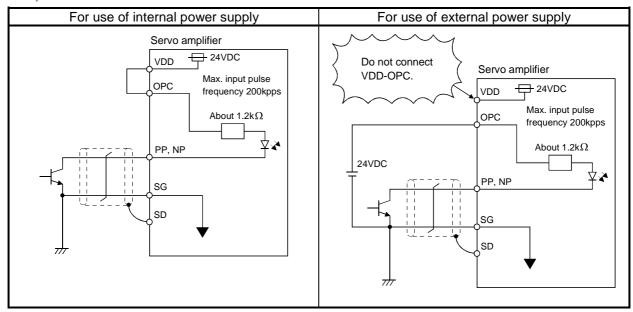


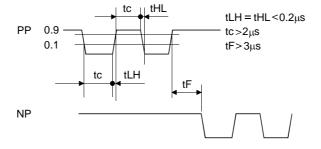
Note: This also applies to the use of the external power supply.


(2) Digital output interface DO-1

A lamp, relay or photocoupler can be driven. Provide a diode (D) for an inductive load, or an inrush current suppressing resister (R) for a lamp load. (Permissible current: 40mA or less, inrush current: 100mA or less)

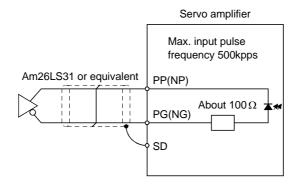
(a) Inductive load


(b) Lamp load

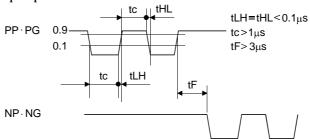

(3) Pulse train input interface DI-2

Provide a pulse train signal in the open collector or differential line driver system.

- (a) Open collector system
 - 1) Interface



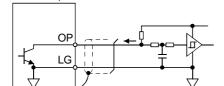
2) Conditions of the input pulse

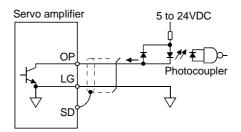


(b) Differential line driver system

1) Interface

2) Conditions of the input pulse

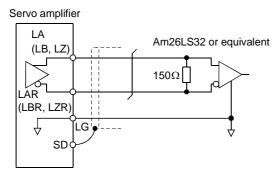


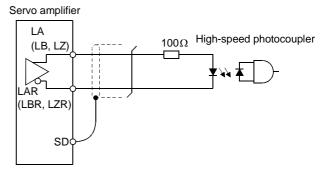

(4) Encoder pulse output DO-2

(a) Open collector system

Interface

Max. output current : 35mA Servo amplifier

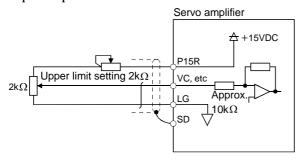




(b) Differential line driver system


1) Interface

Max. output current: 35mA

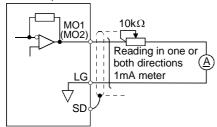


2) Output pulse

(5) Analog input

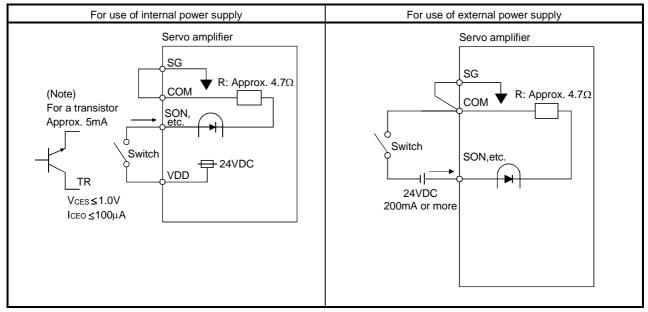
Input impedance 10 to $12k\Omega$

(6) Analog output


Output voltage ±10V

Max.1mA

Max. output current


Resolution: 10bit

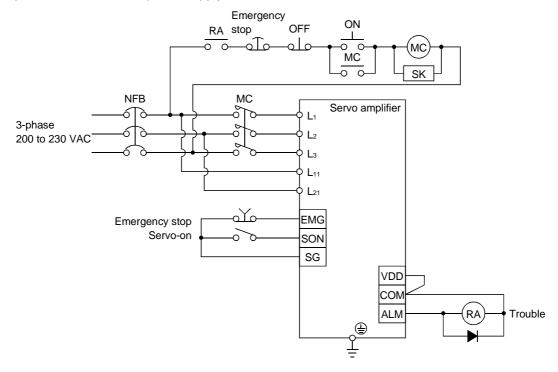
Servo amplifier

(7) Source input interface

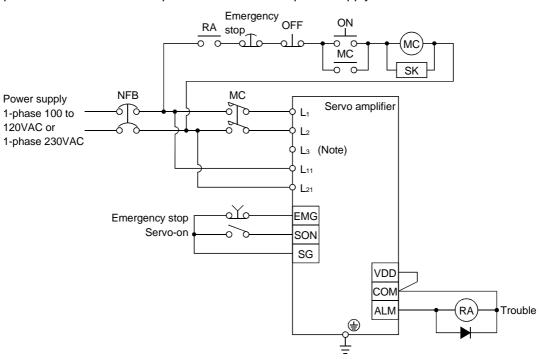
When using the input interface of source type, all Dl-1 input signals are of source type. Source output cannot be provided.

Note: This also applies to the use of the external power supply.

3.7 Input power supply circuit


- When the servo amplifier has become faulty, switch power off on the servo amplifier power side. Continuous flow of a large current may cause a fire.
- Use the trouble signal to switch power off. Otherwise, a regenerative brake transistor fault or the like may overheat the regenerative brake resistor, causing a fire.

3.7.1 Connection example


Wire the power supply and main circuit as shown below so that the servo-on signal turns off as soon as alarm occurrence is detected and power is shut off.

A no-fuse breaker (NFB) must be used with the input cables of the power supply.

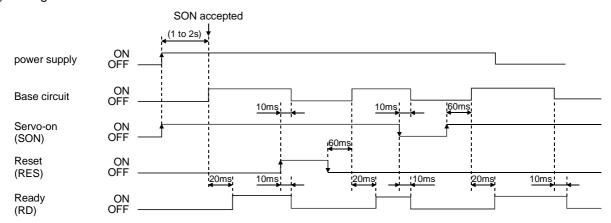
(1) For 3-phase 200 to 230VAC power supply

(2) For 1-phase 100 to 120VAC or 1-phase 100 to 120VAC power supply

Note: Not provided for 1-phase 100 to 120VAC.

3.7.2 Terminals

The positions and signal arrangements of the terminal blocks change with the capacity of the servo amplifier. Refer to Section 11.1.

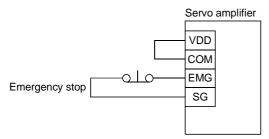

Symbol	Signal	Description				
		Supply L_1 , L_2 and L_3 with the following power:				
	For 1-phase 230VAC, connect the power supply to L ₁ /L ₂ and leave L ₃ open.					
			MR-J2S-10A to	MR-J2S-100A	MR-J2S-10A1	
		Power supply	70A	to 700A	to 40A1	
		3-phase 200 to 230VAC,	11			
L_1, L_2, L_3	Main circuit power supply	50/60Hz	L ₁ • L ₂ • L ₃			
		1-phase 230VAC,	$L_1 \cdot L_2$			
		50/60Hz	L ₁ L ₂			
		1-phase 100 to 120VAC,			$L_1 \cdot L_2$	
		50/60Hz			L ₁ L ₂	
U, V, W	Servo motor output	Connect to the servo motor power	er supply termin	als (U, V, W).		
		Servo amplifier	MR-J2S-10A to	700A MR-1	2S-10A1 to 40A1	
		Power supply	WII 020 107 to	3 7 0 0 7 WII C 0 2	WIN 320 TOAT to 40AT	
L_{11}, L_{21}	Control circuit power supply	1-phase 200 to 230VAC,	L11 • L21			
B11, B21	control circuit power supply	50/60Hz	EII EEI			
		1-phase 100 to 120VAC,	L11 • L21		L11 L21	
		50/60Hz			211 221	
		4) MD TOG 0704				
		1) MR-J2S-350A or less	D.D. (1:C h		
		Wiring is factory-connected across P-D (servo amplifier built-in regenerative				
		brake resistor). When using the regenerative brake ention, always remove the wiring from				
		When using the regenerative brake option, always remove the wiring from across P-D and connect the regenerative brake option across P-C.				
P, C, D	Regenerative brake option	2) MR-J2S-500A or more				
1, 0, 2	regenerative brane speion	Wiring is factory-connected across P-C (servo amplifier built-in regenerative				
		brake resistor).				
		When using the regenerative brake option, always remove the wiring from				
	across P-C and connect the regenerative brake option across P-C.					
	Refer to Section 13.1.1 for details.					
	Dotum comments	When using the return converter or brake unit, connect it across P-N.				
N	Return converter Brake unit	Do not connect it to the servo amplifier of MR-J2S-350A or less.				
	Drake unit	Refer to Sections 13.1.2 and 13.1.3 for details.				
		Connect this terminal to the pro	tective earth (P	E) terminals of	the servo motor	
	Protective earth (PE)	Connect this terminal to the protective earth (PE) terminals of the servo motor and control box for grounding.				
		and control box for grounding.				

3.7.3 Power-on sequence

(1) Power-on procedure

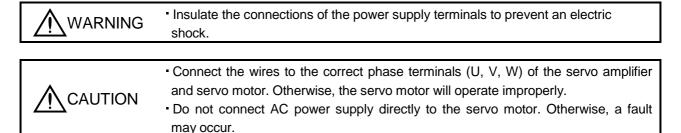
- 1) Always wire the power supply as shown in above Section 3.7.1 using the magnetic contactor with the main circuit power supply (three-phase 200V: L1, L2, L3, single-phase 230V: L1, L2). Configure up an external sequence to switch off the magnetic contactor as soon as an alarm occurs.
- 2) Switch on the control circuit power supply L11, L21 simultaneously with the main circuit power supply or before switching on the main circuit power supply. If the main circuit power supply is not on, the display shows the corresponding warning. However, by switching on the main circuit power supply, the warning disappears and the servo amplifier will operate properly.
- 3) The servo amplifier can accept the servo-on signal (SON) about 1 to 2s after the main circuit power supply is switched on. Therefore, when SON is switched on simultaneously with the main circuit power supply, the base circuit will switch on in about 1 to 2s, and the ready signal (RD) will switch on in further about 20ms, making the servo amplifier ready to operate. (Refer to paragraph (2) in this section.)
- 4) When the reset signal (RES) is switched on, the base circuit is shut off and the servo motor shaft coasts.

(2) Timing chart

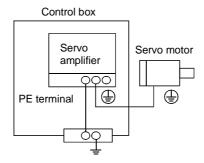


(3) Emergency stop

Make up a circuit which shuts off main circuit power as soon as EMG-SG are opened at an emergency stop. To ensure safety, always install an external emergency stop switch across EMG-SG. By disconnecting EMG-SG, the dynamic brake is operated to bring the servo motor to a sudden stop. At this time, the display shows the servo emergency stop warning (AL.E6).


During ordinary operation, do not use the external emergency stop signal to alternate stop and run. The servo amplifier life may be shortened.

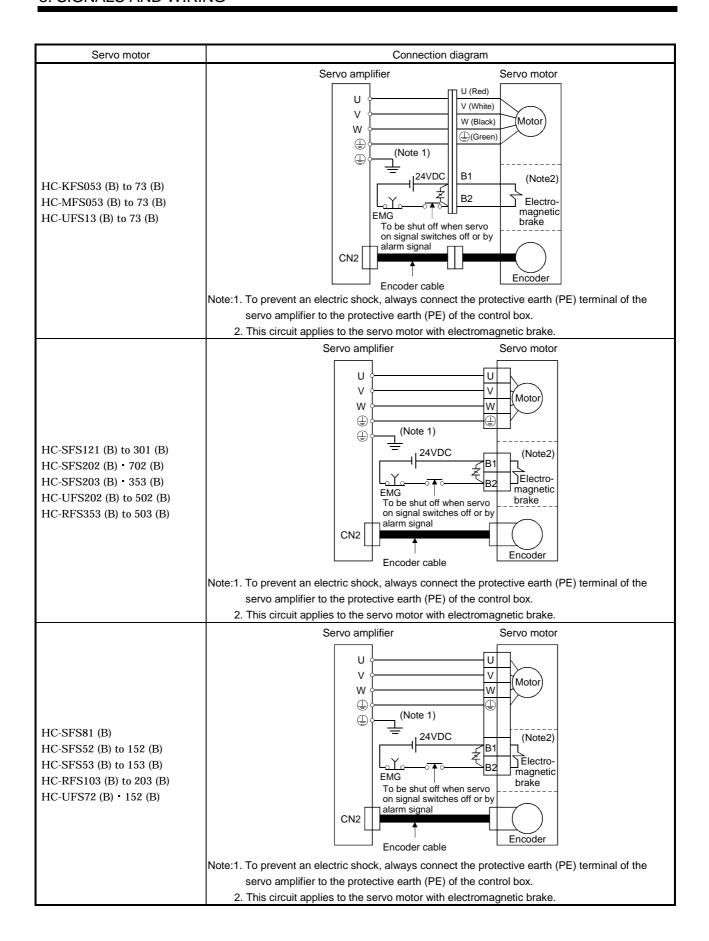
Also, if the start signal is on or a pulse train is input during an emergency stop, the servo motor will rotate as soon as the warning is reset. During an emergency stop, always shut off the run command.


3.8 Connection of servo amplifier and servo motor

3.8.1 Connection instructions

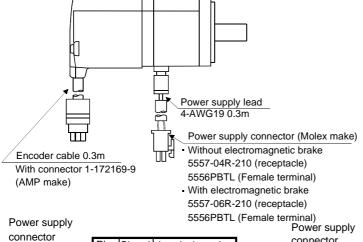
The connection method differs according to the series and capacity of the servo motor and whether or not the servo motor has the electromagnetic brake. Perform wiring in accordance with this section.

(1) For grounding, connect the earth cable of the servo motor to the protective earth (PE) terminal of the servo amplifier and connect the ground cable of the servo amplifier to the earth via the protective earth of the control box. Do not connect them directly to the protective earth of the control panel.



(2) Do not share the 24VDC interface power supply between the interface and electromagnetic brake. Always use the power supply designed exclusively for the electromagnetic brake.

3.8.2 Connection diagram


The following table lists wiring methods according to the servo motor types. Use the connection diagram which conforms to the servo motor used. For cables required for wiring, refer to Section 13.2.1. For encoder cable connection, refer to Section 13.1.4. For the signal layouts of the connectors, refer to Section 3.8.3.

For the servo motor connector, refer to Chapter 3 of the Servo Motor Instruction Manual.

3.8.3 I/O terminals

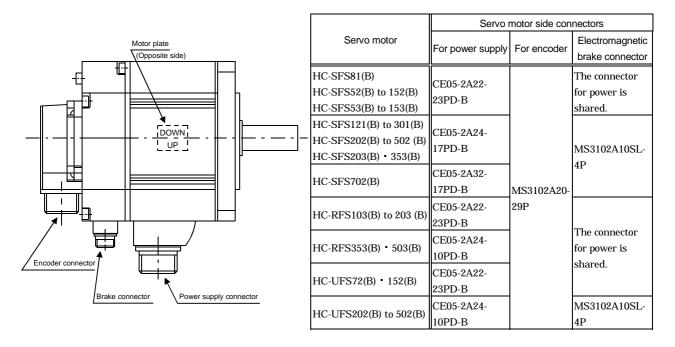
(1) HC-KFS • HC-MFS • HC-UFS3000r/min series

5557-04R-210

557 041	'
1 3	-
2 4	

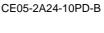
Pin	Signal	Lead wire color
1	U	Red
2	V	White
3	W	Black
4	Earth	Green/yellow

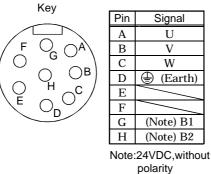
connector 5557-06R-210

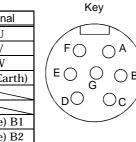


Encoder connector signal arrangement

	7 F	_	
1	2	3	
MR	MRR	BAT	
4	5	6	
MD	MDR		
7	8	9	
P5	LG	SHD	

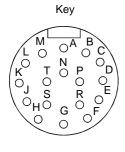

Pin	Signal	Lead wire color
1	U	Red
2	V	White
3	W	Black
4	Earth	Green/yellow
5	B1	
6	B2	


(2) HC-SFS • HC-RFS • HC-UFS2000 r/min series



Power supply connector signal arrangement

CE05-2A22-23PD-B

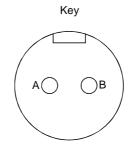


Pin	Signal		
Α	U		
В	V		
С	W		
D	(Earth)		
Ε	(Note) B1		
F	(Note) B2		
G			

Note:24VDC,without polarity

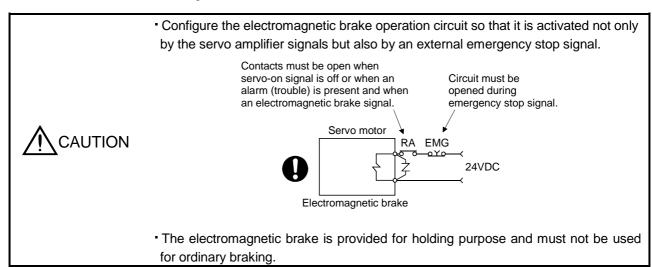
Encoder connector signal arrangement

MS3102A20-29P



Pin	Signal
Α	MD
В	MDR
С	MR
D	MRR
Е	
F	BAT
G	LG
Н	
J	

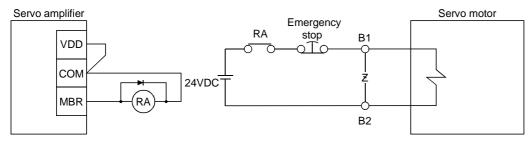
Pin	Signal
K	
L	
M	
N	SD
P	
R	LG
S	P5
T	


Electromagnetic brake connector signal arrangement

MS3102A10SL-4P

Signal					
(Note)B1					
(Note)B2					
Note:24VDC without polarity					
	(Note)B1 (Note)B2 24VDC without				

3.9 Servo motor with electromagnetic brake

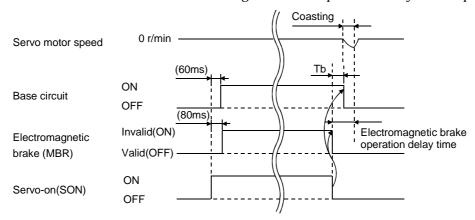

POINT

 Refer to the Servo Motor Instruction Manual for specifications such as the power supply capacity and operation delay time of the electromagnetic brake.

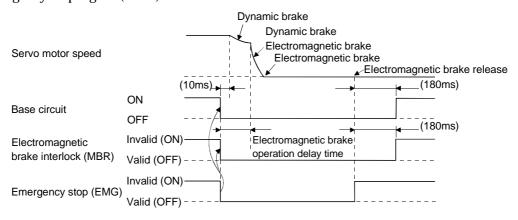
Note the following when the servo motor equipped with electromagnetic brake is used for applications requiring a brake to hold the motor shaft (vertical lift applications):

- 1) Set "□□1□" in parameter No.1 to make the electromagnetic brake interlock signal (MBR) valid. Note that this will make the zero speed signal (ZSP) unavailable.
- 2) Do not share the 24VDC interface power supply between the interface and electromagnetic brake. Always use the power supply designed exclusively for the electromagnetic brake.
- 3) The brake will operate when the power (24VDC) switches off.
- 4) While the reset signal is on, the base circuit is shut off. When using the servo motor with a vertical shaft, use the electromagnetic brake interlock signal (MBR).
- 5) Switch off the servo-on signal after the servo motor has stopped.

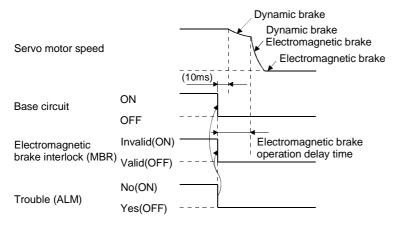
(1) Connection diagram

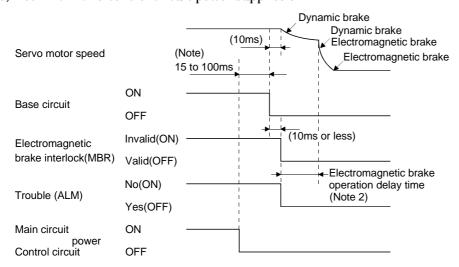

(2) Setting

- 1) Set "□□1□" in parameter No.1 to make the electromagnetic brake interlock signal (MBR) valid.
- 2) Using parameter No. 33 (electromagnetic brake sequence output), set a time delay (Tb) at servo-off from electromagnetic brake operation to base circuit shut-off as in the timing chart shown in (3) in this section.

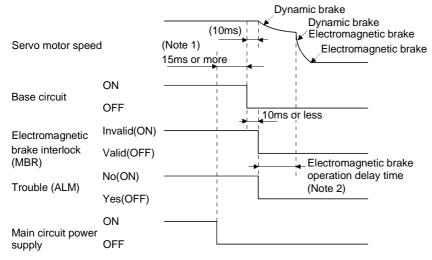

(3) Timing charts

(a) Servo-on signal command (from controller) ON/OFF


Tb [ms] after the servo-on (SON) signal is switched off, the servo lock is released and the servo motor coasts. If the electromagnetic brake is made valid in the servo lock status, the brake life may be shorter. Therefore, when using the electromagnetic brake in a vertical lift application or the like, set Tb to about the same as the electromagnetic brake operation delay time to prevent a drop.


(b) Emergency stop signal (EMG) ON/OFF

(c) Alarm occurrence



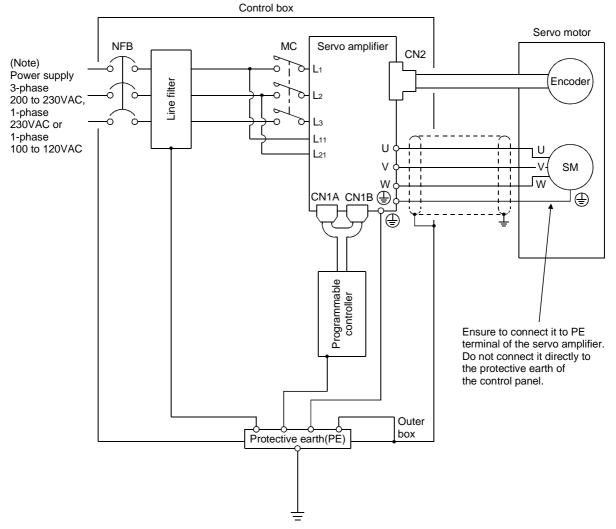
(d) Both main and control circuit power supplies off

Note: Changes with the operating status.


(e) Only main circuit power supply off (control circuit power supply remains on)

Note: 1. Changes with the operating status.

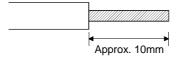
When the main circuit power supply is off in a motor stop status, the main circuit off warning (A.E9) occurs and the ALM signal does not turn off.


3.10 Grounding

- Ground the servo amplifier and servo motor securely.
- To prevent an electric shock, always connect the protective earth (PE) terminal of the servo amplifier with the protective earth (PE) of the control box.

The servo amplifier switches the power transistor on-off to supply power to the servo motor. Depending on the wiring and ground cablerouting, the servo amplifier may be affected by the switching noise (due to di/dt and dv/dt) of the transistor. To prevent such a fault, refer to the following diagram and always ground.

To conform to the EMC Directive, refer to the EMC Installation Guidelines (IB(NA)67310).



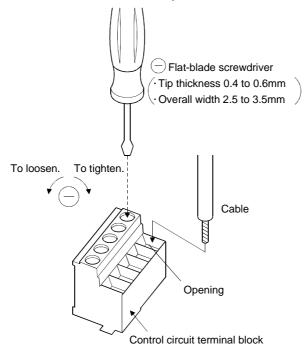
Note: For 1-phase 230VAC, connect the power supply to L₁ · L₂ and leave L₃ open. There is no L₃ for 1-phase 100 to 120VAC power supply.

3.11 Servo amplifier terminal block (TE2) wiring method

(1) Termination of the cables

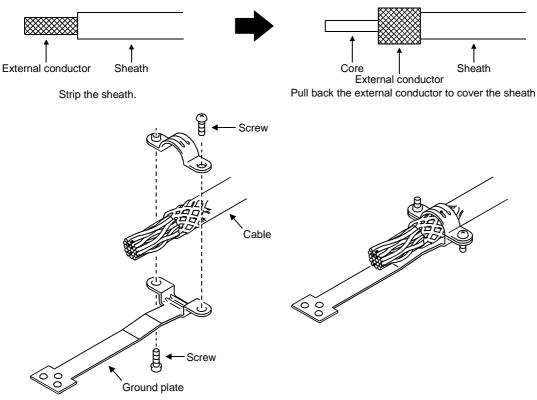
Solid wire: After the sheath has been stripped, the cable can be used as it is. (Cable size: $0.2 \text{ to } 2.5 \text{mm}^2$)

Twisted wire: Use the cable after stripping the sheath and twisting the core. At this time, take care to avoid a short caused by the loose wires of the core and the adjacent pole. Do not solder the core as it may cause a contact fault. (Cable size: 0.2 to 2.5mm²)Alternatively, a bar terminal may be used to put the wires together.(Phoenix contact make)



Cable size		Bar t	erminal type	Crimping
[mm ²]	n ²] AWG For 1 cable For 2 cables		tool	
0.05	0.4	Al0.25-6YE		
0.25	24	Al0.25-8YE		
0.5	20	Al0.5-6WH		
0.5	20	Al0.5-8WH		
0.75	18	Al0.75-6GY	Al-TWIN2 \times 0.75-8GY	
0.75	10	Al0.75-8GY	Al-TWIN2 \times 0.75-10GY	CRIMPFOX-UD6
1	18	Al1-6RD	Al-TWIN2 \times 1-8RD	CRIMPFUX-UD6
1	18	Al1-8RD	Al-TWIN2 \times 1-10RD	
1.5	16	Al1.5-6BK	Al-TWIN2 \times 1.5-8BK	
1.5	10	Al1.5-8BK	Al-TWIN2 \times 1.5-12BK	
2.5	1.4	Al2.5-8BU	Al-TWIN2 $ imes$ 2.5-10BU	
۵.5	14	Al2.5-8BU-1000	Al-TWIN2 $ imes$ 2.5-13BU	

(2) Connection


Insert the core of the cable into the opening and tighten the screw with a flat-blade screwdriver so that the cable does not come off. (Tightening torque: 0.5 to 0.6N $^{\bullet}$ m) Before inserting the cable into the opening, make sure that the screw of the terminal is fully loose.

When using a cable of 1.5mm² or less, two cables may be inserted into one opening.

3.12 Instructions for the 3M connector

When fabricating an encoder cable or the like, securely connect the shielded external conductor of the cable to the ground plate as shown in this section and fix it to the connector shell.

4. OPERATION

4.1 When switching power on for the first time

Before starting operation, check the following:

(1) Wiring

- (a) A correct power supply is connected to the power input terminals (L1, L2, L3, L11, L21) of the servo amplifier.
- (b) The servo motor power supply terminals (U, V, W) of the servo amplifier match in phase with the power input terminals (U, V, W) of the servo motor.
- (c) The servo motor power supply terminals (U, V, W) of the servo amplifier are not shorted to the power input terminals (L1, L2, L3) of the servo motor.
- (d) The servo amplifier and servo motor are grounded securely.
- (e) Note the following when using the regenerative brake option, brake unit or power return converter:
 - 1) For the MR-J2S-350A or less, the lead has been removed from across D-P of the control circuit terminal block, and twisted cables are used for its wiring.
 - 2) For the MR-J2S-500A or more, the lead has been removed from across P-C of the servo amplifier built-in regenerative brake resistor, and twisted cables are used for its wiring.
- (f) When stroke end limit switches are used, the signals across LSP-SG and LSN-SG are on during operation.
- (g) 24VDC or higher voltages are not applied to the pins of connectors CN1A and CN1B.
- (h) SD and SG of connectors CN1A and CN1B are not shorted.
- (i) The wiring cables are free from excessive force.

(2) Environment

Signal cables and power cables are not shorted by wire offcuts, metallic dust or the like.

(3) Machine

- (a) The screws in the servo motor installation part and shaft-to-machine connection are tight.
- (b) The servo motor and the machine connected with the servo motor can be operated.

4.2 Startup

MARNING

• Do not operate the switches with wet hands. You may get an electric shock.

- Before starting operation, check the parameters. Some machines may perform unexpected operation.
- During power-on for some after power-off, do not touch or close a parts (cable etc.) to the servo amplifier heat sink, regenerative brake resistor, the servo motor, etc. Their temperatures may be high and you may get burnt or a parts may damaged.

Connect the servo motor with a machine after confirming that the servo motor operates properly alone.

4.2.1 Selection of control mode

Use parameter No. 0 to choose the control mode used. After setting, this parameter is made valid by switching power off, then on.

4.2.2 Position control mode

(1) Power on

- 1) Switch off the servo-on (SON) signal.
- 2) When main circuit power/control circuit power is switched on, the display shows "C (Cumulative feedback pulses)", and in two second later, shows data.

In the absolute position detection system, first power-on results in the absolute position lost (AL.25) alarm and the servo system cannot be switched on. This is not a failure and takes place due to the uncharged capacitor in the encoder.

The alarm can be deactivated by keeping power on for a few minutes in the alarm status and then switching power off once and on again.

Also in the absolute position detection system, if power is switched on at the servo motor speed of 500r/min or higher, position mismatch may occur due to external force or the like. Power must therefore be switched on when the servo motor is at a stop.

(2) Test operation 1

Using jog operation in the test operation mode, make sure that the servo motor operates. (Refer to Section 6.8.2.)

(3) Parameter setting

Set the parameters according to the structure and specifications of the machine. Refer to Chapter 5 for the parameter definitions and to Sections 6.5 for the setting method.

Parameter No.	Name	Setting	Description
0	Control mode, regenerative brake option selection	□3□0	—Position control mode —MR-RB12 regenerative brake option is used.
1	Function selection 1	0□02	—Input filter 3.555ms (initial value) —Electromagnetic brake interlock signal is not used. —Used in incremental positioning system.
2	Auto tuning		—Middle response (initial value) is selected. —Auto tuning mode 1 is selected.
3	Electronic gear numerator (CMX)	2	Electronic gear numerator
4	Electronic gear denominator (CDV)	1	Electronic gear denominator

After setting the above parameters, switch power off once. Then switch power on again to make the set parameter values valid.

(4) Servo-on

Switch the servo-on in the following procedure:

- 1) Switch on main circuit/control power supply.
- 2) Switch on the servo-on signal (SON).

When placed in the servo-on status, the servo amplifier is ready to operate and the servo motor is locked.

(5) Command pulse input

Entry of a pulse train from the positioning device rotates the servo motor. At first, run it at low speed and check the rotation direction, etc. If it does not run in the intended direction, check the input signal.

On the status display, check the speed, command pulse frequency, load factor, etc. of the servo motor. When machine operation check is over, check automatic operation with the program of the positioning device.

This servo amplifier has a real-time auto tuning function under model adaptive control. Performing operation automatically adjusts gains. The optimum tuning results are provided by setting the response level appropriate for the machine in parameter No. 2. (Refer to chapter 7)

(6) Home position return

Make home position return as required.

(7) Stop

In any of the following statuses, the servo amplifier interrupts and stops the operation of the servo motor:

Refer to Section 3.9, (2) for the servo motor equipped with electromagnetic brake. Note that the stop pattern of stroke end (LSP/LSN) OFF is as described below.

(a) Servo-on (SON) OFF

The base circuit is shut off and the servo motor coasts.

(b) Alarm occurrence

When an alarm occurs, the base circuit is shut off and the dynamic brake is operated to bring the servo motor to a sudden stop.

(c) Emergency stop (EMG) OFF

The base circuit is shut off and the dynamic brake is operated to bring the servo motor to a sudden stop. Alarm AL.E6 occurs.

(d) Stroke end (LSP/LSN) OFF

The servo motor is brought to a sudden stop and servo-locked. The motor may be run in the opposite direction.

POINT

A sudden stop indicates that a stop is made with the droop pulses erased.

4.2.3 Speed control mode

(1) Power on

- 1) Switch off the servo-on (SON) signal.
- 2) When main circuit power/control circuit power is switched on, the display shows "r (servo motor speed)", and in two second later, shows data.

(2) Test operation

Using jog operation in the test operation mode, make sure that the servo motor operates. (Refer to Section 6.8.2.)

(3) Parameter setting

Set the parameters according to the structure and specifications of the machine. Refer to Chapter 5 for the parameter definitions and to Sections 6.5 for the setting method.

Parameter No.	Name	Setting	Description
0	Control mode, regenerative brake option selection	002	— Speed control mode — Regenerative brake option is not used.
1	Function selection 1		—Input filter 3.555ms (initial value) —Electromagnetic brake interlock signal is used.
2	Auto tuning	□1□5 	— Middle response (initial value) is selected. — Auto tuning mode 1 is selected.
8	Internal speed command 1	1000	Set 1000r/min.
9	Internal speed command 2	1500	Set 1500r/min.
10	Internal speed command 3	2000	Set 2000r/min.
11	Acceleration time constant	1000	Set 1000ms.
12	Deceleration time constant	500	Set 500ms.
13	S-pattern acceleration/deceleration time constant	0	Not used

After setting the above parameters, switch power off once. Then switch power on again to make the set parameter values valid.

(4) Servo-on

Switch the servo-on in the following procedure:

- 1) Switch on main circuit/control power supply.
- 2) Switch on the servo-on signal (SON) (short SON-SG). When placed in the servo-on status, the servo amplifier is ready to operate and the servo motor is locked.

(5) Start

Using speed selection 1 (SP1) and speed selection 2 (SP2), choose the servo motor speed. Turn on forward rotation start (ST1) to run the motor in the forward rotation (CCW) direction or reverse rotation start (ST2) to run it in the reverse rotation (CW) direction. At first, set a low speed and check the rotation direction, etc. If it does not run in the intended direction, check the input signal.

On the status display, check the speed, load factor, etc. of the servo motor.

When machine operation check is over, check automatic operation with the host controller or the like. This servo amplifier has a real-time auto tuning function under model adaptive control. Performing operation automatically adjusts gains. The optimum tuning results are provided by setting the response level appropriate for the machine in parameter No. 2. (Refer to chapter 7)

(6) Stop

In any of the following statuses, the servo amplifier interrupts and stops the operation of the servo motor:

Refer to Section 3.9, (2) for the servo motor equipped with electromagnetic brake. Note that simultaneous ON or simultaneous OFF of stroke end (LSP, LSN) OFF and forward rotation start (ST1) or reverse rotation start (ST2) signal has the same stop pattern as described below.

(a) Servo-on (SON) OFF

The base circuit is shut off and the servo motor coasts.

(b) Alarm occurrence

When an alarm occurs, the base circuit is shut off and the dynamic brake is operated to bring the servo motor to a sudden stop.

(c) Emergency stop (EMG) OFF

The base circuit is shut off and the dynamic brake is operated to bring the servo motor to a sudden stop. Alarm AL.E6 occurs.

(d) Stroke end (LSP/LSN) OFF

The servo motor is brought to a sudden stop and servo-locked. The motor may be run in the opposite direction.

(e) Simultaneous ON or simultaneous OFF of forward rotation start (ST1) and reverse rotation start (ST2) signals

The servo motor is decelerated to a stop.

POINT

 A sudden stop indicates that a stop is made at the deceleration time constant of zero.

4.2.4 Torque control mode

(1) Power on

- 1) Switch off the servo-on (SON) signal.
- 2) When main circuit power/control circuit power is switched on, the display shows "U (torque command voltage)", and in two second later, shows data.

(2) Test operation

Using jog operation in the test operation mode, make sure that the servo motor operates. (Refer to Section 6.8.2.)

(3) Parameter setting

Set the parameters according to the structure and specifications of the machine. Refer to Chapter 5 for the parameter definitions and to Sections 6.5 for the setting method.

Parameter No.	Name	Setting	Description
0	Control mode, regenerative brake option selection	□0□4 T T	— Torque control mode — Regenerative brake option is not used.
1	Function selection 1		— Input filter 3.555ms (initial value) — Electromagnetic brake interlock signal is not used.
8	Internal speed limit 1	1000	Set 1000r/min.
9	Internal speed limit 2	1500	Set 1500r/min.
10	Internal speed limit 3	2000	Set 2000r/min.
11	Acceleration time constant	1000	Set 1000ms.
12	Deceleration time constant	500	Set 500ms.
13	S-pattern acceleration/deceleration time constant	0	Not used
14	Torque command time constant	2000	Set 2000ms
28	Internal torque limit 1	50	Controlled to 50% output

After setting the above parameters, switch power off once. Then switch power on again to make the set parameter values valid.

(4) Servo-on

Switch the servo-on in the following procedure:

- 1) Switch on main circuit/control power supply.
- 2) Switch on the servo-on signal (SON) (short SON-SG). When placed in the servo-on status, the servo amplifier is ready to operate and the servo motor is locked.

(5) Start

Using speed selection 1 (SP1) and speed selection 2 (SP2), choose the servo motor speed. Turn on forward rotation select (DI4) to run the motor in the forward rotation (CCW) direction or reverse rotation select (DI3) to run it in the reverse rotation (CW) direction, generating torque. At first, set a low speed and check the rotation direction, etc. If it does not run in the intended direction, check the input signal.

On the status display, check the speed, load factor, etc. of the servo motor.

When machine operation check is over, check automatic operation with the host controller or the like.

(6) Stop

In any of the following statuses, the servo amplifier interrupts and stops the operation of the servo motor:

Refer to Section 3.9, (2) for the servo motor equipped with electromagnetic brake.

(a) Servo-on (SON) OFF

The base circuit is shut off and the servo motor coasts.

(b) Alarm occurrence

When an alarm occurs, the base circuit is shut off and the dynamic brake is operated to bring the servo motor to a sudden stop.

- (c) Emergency stop (EMG) OFF
 - The base circuit is shut off and the dynamic brake is operated to bring the servo motor to a sudden stop. Alarm AL.E6 occurs.
- (d) Simultaneous ON or simultaneous OFF of forward rotation selection (RS1) and reverse rotation selection (RS2) signals

The servo motor coasts.

POINT

 A sudden stop indicates that a stop is made at the deceleration time constant of zero.

4.3 Multidrop communication

You can use the RS-422 communication function (parameter No.16) to operate two or more servo amplifiers on the same bus. In this case, set station numbers to the servo amplifiers to recognize the servo amplifier to which the current data is being sent. Use parameter No. 15 to set the station numbers.

Always set one station number to one servo amplifier. Normal communication cannot be made if the same station number is set to two or more servo amplifiers.

For details, refer to Chapter 14.

5. PARAMETERS

ACAUTION

• Never adjust or change the parameter values extremely as it will make operation instable.

5.1 Parameter list

5.1.1 Parameter write inhibit

POINT

• After setting the parameter No. 19 value, switch power off, then on to make that setting valid.

In the MR-J2S-A servo amplifier, its parameters are classified into the basic parameters (No. 0 to 19), expansion parameters 1 (No. 20 to 49) and expansion parameters 2 (No.50 to 84) according to their safety aspects and frequencies of use. In the factory setting condition, the customer can change the basic parameter values but cannot change the expansion parameter values. When fine adjustment, e.g. gain adjustment, is required, change the parameter No. 19 setting to make the expansion parameters write-enabled.

The following table indicates the parameters which are enabled for reference and write by the setting of parameter No. 19. Operation can be performed for the parameters marked \bigcirc .

Parameter No. 19 setting	Operation	Basic parameters No. 0 to No. 19	Expansion parameters 1 No. 20 to No. 49	Expansion parameters 2 No. 50 to No. 84
0000	Reference	0	1101 20 10 1101 10	THE COLOT HE FOLLOW
(initial value)	Write	0		
0004	Reference	No. 19 only		
000A	Write	No. 19 only		
000D	Reference	0	0	
000B	Write	0		
0000	Reference	0	0	
000C	Write	0	0	
0000	Reference	0	0	0
000E	Write	0	0	0
1000	Reference	0		
100B	Write	No. 19 only		
1000	Reference	0	0	
100C	Write	No. 19 only		
100E	Reference	0	0	0
100E	Write	No. 19 only		

5.1.2 Lists

POINT

• For any parameter whose symbol is preceded by *, set the parameter value and switch power off once, then switch it on again to make that parameter setting valid.

The symbols in the control mode column of the table indicate the following modes:

P : Position control mode S : Speed control mode T : Torque control mode

(1) Item list

	No.	Symbol	Name	Control mode	Initial value	Unit	Customer setting
	0	*STY	Control mode ,regenerative brake option selection	P-S-T	0000		ootang
	1	*OP1	Function selection 1	P·S·T	0002		
	2	ATU	Auto tuning	P•S	0105		
	3	CMX	Electronic gear numerator	P	1		
	4	CDV	Electronic gear denominator	P	1		
	5	INP	In-position range	P	100	pulse	
	6	PG1	Position loop gain 1	P	35	rad/s	
	7	PST	Position command acceleration/deceleration time constant (Smoothing)	P	3	ms	
S		661	Internal speed command 1	S	100	r/min	
Basic parameters	8	SC1	Internal speed limit 1	T	100	r/min	
Jam	9	SC2	Internal speed command 2	S	500	r/min	
pa		SCZ	Internal speed limit 2	Т	500	r/min	
asic	10	SC3	Internal speed command 3	S	1000	r/min	
Ř		303	Internal speed limit 3	Т	1000	r/min	
	11	STA	Acceleration time constant	S•T	0	ms	
	12	STB	Deceleration time constant	S•T	0	ms	
	13	STC	S-pattern acceleration/deceleration time constant	S•T	0	ms	
	14	TQC	Torque command time constant	Т	0	ms	
	15	*SNO	Station number setting	P·S·T	0	station	
	16	*BPS	Serial communication function selection, alarm history clear	P·S·T	0000		
	17	MOD	Analog monitor output	P S T	0100		
	18	*DMD	Status display selection	P S T	0000		
	19	*BLK	Parameter block	P•S•T	0000		

5. PARAMETERS

	No.	Symbol	Name	Control mode	Initial value	Unit	Customer setting
	20	*OP2	Function selection 2	P•S	0000		
	21	*OP3	Function selection 3 (Command pulse selection)	P	0000		
	22	*OP4	Function selection 4	P·S·T	0000		
	23	FFC	Feed forward gain	P	0	%	
	24	ZSP	Zero speed	P S T	50	r/min	
	0.5	V.C.V.	Analog speed command maximum speed	S	(Note1)0	(r/min)	
	25	VCM	Analog speed limit maximum speed	T	(Note1)0	(r/min)	
	26	TLC	Analog torque command maximum output	Т	100	%	
	27	*ENR	Encoder output pulses	P·S·T	4000	pulse /rev	
	28	TL1	Internal torque limit 1	P·S·T	100	%	
	29	VCO	Analog speed command offset	S	(Note2)	mV	
		VCO	Analog speed limit offset	T	(Note2)	mV	
	30	TLO	Analog torque command offset	T	0	mV	
rs 1	30	ILO	Analog torque limit offset	S	0	mV	
ete	31	MO1	Analog monitor 1 offset	P·S·T	0	mV	
ram	32	MO2	Analog monitor 2 offset	P·S·T	0	mV	
pa	33	MBR	Electromagnetic brake sequence output	P·S·T	100	ms	
Expansion parameters 1	34	GD2	Ratio of load inertia moment to servo motor inertia moment	P•S	70	0.1 times	
-xp	35	PG2	Position loop gain 2	P	35	rad/s	
	36	VG1	Speed loop gain 1	P•S	177	rad/s	
	37	VG2	Speed loop gain 2	P•S	817	rad/s	
	38	VIC	Speed integral compensation	P•S	48	ms	
	39	VDC	Speed differential compensation	P•S	980		
	40		For manufacturer setting		0		
	41	*DIA	Input signal automatic ON selection	P S T	0000		
	42	*DI1	Input signal selection 1	P·S·T	0003		
	43	*DI2	Input signal selection 2 (CN1B-5)	P·S·T	0111		
	44	*DI3	Input signal selection 3 (CN1B-14)	PST	0222		
	45	*DI4	Input signal selection 4 (CN1A-8)	P·S·T	0665		
	46	*DI5	Input signal selection 5 (CN1B-7)	P•S•T	0770		
	47	*DI6	Input signal selection 6 (CN1B-8)	P·S·T	0883		
	48	*DI7	Input signal selection 7 (CN1B-9)	P·S·T	0994		
	49	*DO1	Output signal selection 1	P·S·T	0000		

For notes, refer to next page.

				Control	Initial		Customer	
	No.	Symbol	Name	mode	value	Unit	setting	
	50		For manufacturer setting		0000			
	51	*OP6	Function selection 6	P·S·T	0000			
	52		For manufacturer setting		0000			
	53	*OP8	Function selection 8	P·S·T	0000			
	54	*OP9	Function selection 9	P S T	0000			
	55	*OPA	Function selection A	P	0000			
	56	SIC	Serial communication time-out selection	P·S·T	0	s		
	57		For manufacturer setting		10			
	58	NH1	Machine resonance suppression filter 1	PST	0000			
	59	NH2	Machine resonance suppression filter 2	P S T	0000			
	60	LPF	Low-pass filter, adaptive vibration suppression control	P S T	0000			
	61	GD2B	Ratio of load inertia moment to Servo motor inertia moment 2	P•S	70	0.1 times		
	62	PG2B	Position control gain 2 changing ratio	P	100	%		
	63	VG2B	Speed control gain 2 changing ratio	P•S	100	%		
	64	VICB	Speed integral compensation changing ratio	P•S	100	%		
2	65	*CDP	Gain changing selection	P•S	0000			
ers	66	CDS	Gain changing condition	P•S	10	(Note3)		
met	67	CDT	Gain changing time constant	P•S	1	ms		
Expansion parameters	68		For manufacturer setting		0			
d u	69	CMX2	Command pulse multiplying factor numerator 2	P	1			
oisc	70	CMX3	Command pulse multiplying factor numerator 3	P	1			
фал	71	CMX4	Command pulse multiplying factor numerator 4	P	1			
岛	72	004	Internal speed command 4	S	000	, .		
		SC4	Internal speed limit 4	T	200	r/min		
	70	CCT	Internal speed command 5	S	200	/		
	73	SC5	Internal speed limit 5	T	300	r/min		
	7.4	74	SC6	Internal speed command 6	S	500	r/min	
	74	300	Internal speed limit 6	T	500	1/111111		
	75	SC7	Internal speed command 7	S	800	r/min		
	73	SCI	Internal speed limit 7	T	800	1/111111		
	76	TL2	Internal torque limit 2	P·S·T	100	%		
	77		For manufacturer setting		100			
	78				10000			
	79				10			
	80				10			
	81				100			
	82				100			
	83				100			
	84				0			

Note 1. The setting of "0" provides the rated servo motor speed.

^{2.} Depends on the servo amplifier.

^{3.} Depends on the parameter No. 65 setting.

(2) Details list

Class	No.	Symbol	Name and function	Initial value	Unit	Setting range	Control mode
Basic parameters	0	*STY	Control mode, regenerative brake option selection Used to select the control mode and regenerative brake option. Select the control mode. 0:Position 1:Position and speed 2:Speed 3:Speed and torque 4:Torque 5:Torque and position Selection of regenerative brake option 0:Not used 1:FR-RC, FR-BU 2:MR-RB032 3:MR-RB12 4:MR-RB32 5:MR-RB30 6:MR-RB50 8:MR-RB31 9:MR-RB51 POINT • Wrong setting may cause the regenerative brake option to burn. • If the regenerative brake option selected is not for use with the servo amplifier, parameter error (AL.37) occurs.	0000		Refer to Name and function column.	P·S·T
	1	*OP1	Function selection 1 Used to select the input signal filter, pin CN1B-19 function and absolute position detection system. Input signal filter If external input signal causes chattering due to noise, etc., input filter is used to suppress it. 0:None 1:1.777[ms] 2:3.555[ms] 3:5.333[ms] CN1B-pin 19's function selection 0:Zero Speed detection signal 1:Electromagnetic brake interlock signal Selection of absolute position detection system (Refer to Chapter 15) 0: Used in incremental system 1: Used in absolute position detection system	0002		Refer to Name and function column.	P·S·T

Class	No.	Symbol	Name and function	Initial value	Unit	Setting range	Control mode
Basic parameters	2	ATU	Used to selection the response level, etc. for execution of auto tuning. Refer to Chapter 7. O	0105		Refer to Name and function column.	P·S
	3	CMX	Electronic gear numerator Used to set the electronic gear numerator value. For the setting, refer to Section 5.2.1. Setting "0" automatically sets the resolution of the servo motor connected. For the HC-MFS series, 131072 pulses are set for example.	1		0 1 to 65535	P
	4	CDV	Electronic gear denominator Used to set the electronic gear denominator value. For the setting, refer to Section 5.2.1.	1		1 to 65535	Р

Class	No.	Symbol	Name and function	Initial	Unit	Setting	Control
2 2.30	5	INP	In-position range	value 100	pulse	range 0	mode P
			Used to set the in-position signal (INP) output range in the command pulse increments prior to electronic gear calculation. For example, when you want to set $\pm 10\mu$ m in the conditions that the ballscrew is direct coupled, the lead is 10mm, and the feedback pulses are 8192 pulses/rev (parameter No. 6 : 1), set "8" as indicated by the following expression: $\frac{10\times 10^{-6}}{10\times 10^{-3}} \cdot 8192 = 8.192 \cite{10}{3} \cite$			to 10000	
	6	PG1	Position loop gain 1 Used to set the gain of position loop. Increase the gain to improve trackability in response to the position command. When auto turning mode 1,2 is selected, the result of auto turning is automatically used.	35	red/s	4 to 2000	Р
Basic parameters	7	PST	Position command acceleration/deceleration time constant (position smoothing) Used to set the time constant of a low pass filter in response to the position command. You can use parameter No. 55 to choose the primary delay or linear acceleration/deceleration control system. When you choose linear acceleration/deceleration, the setting range is 0 to 10ms. Setting of longer than 10ms is recognized as 10ms. POINT • When you have chosen linear acceleration/deceleration, do not select control selection (parameter No. 0) and restart after instantaneous power failure (parameter No. 20). Doing so will cause the servo motor to make a sudden stop at the time of position control switching or restart. Example: When a command is given from a synchronizing detector, synchronous operation can be started smoothly if started during line operation. Without time constant setting Servo motor Servo motor speed ON OFF	3	ms	0 to 20000	P
	8	SC1	Start —— Internal speed command 1 Used to set speed 1 of internal speed commands.	100	r/min	0 to instan- taneous	S
			Internal speed limit 1 Used to set speed 1 of internal speed limits.			permi- ssible speed	Т

Class	No.	Symbol	Name and function	Initial	Unit	Setting	Control
	9	SC2	Internal speed command 2	value 500	r/min	range 0 to	mode S
	ย	302	Used to set speed 2 of internal speed commands.	300	1/1111111	o to instan-	၁
			•			taneous	F
			Internal speed limit 2 Used to set speed 2 of internal speed limits.			permi- ssible	T
			Osca to set speed 2 of internal speed limites.			speed	
	10	SC3	Internal speed command 3	1000	r/min	0 to	S
			Used to set speed 3 of internal speed commands.			instan- taneous	
		•	Internal speed limit 3			permi-	T
			Used to set speed 3 of internal speed limits.			ssible	
	11	STA	Acceleration time constant	0	ms	speed 0	S•T
	11	SIA	Used to set the acceleration time required to reach the rated speed	-		to	
			from 0r/min in response to the analog speed command and internal			20000	
			speed commands 1 to 7. If the preset speed command is				
			lower than the rated speed				
			Speed acceleration/deceleration time				
			Rated \(\int \) \ \ \ \ will be shorter.				
			speed				
			Zero →Time				
			speed Parameter Parameter				
			No.11 setting No.12 setting				
			For example for the servo motor of 3000r/min rated speed, set 3000				
			(3s) to increase speed from 0r/min to 1000r/min in 1 second.				
ers	12	STB	Deceleration time constant Used to set the deceleration time required to reach 0r/min from the	0			
met			rated speed in response to the analog speed command and internal				
ara			speed commands 1 to 7.				
Basic parameters	13	STC	S-pattern acceleration/deceleration time constant	0	ms	0	S•T
Bas			Used to smooth start/stop of the servo motor.			to	
			Set the time of the arc part for S-pattern acceleration/deceleration.			1000	
			Speed command				
			Speed nvo motor				
			Or/min				
			STE STE STE STE				
			SIC				
			STA: Acceleration time constant (parameter No.11)				
			STB: Deceleration time constant (parameter No.12) STC: S-pattern acceleration/deceleration time con-				
			stant (parameter No.13)				
			Long setting of STA (acceleration time constant) or STB (deceleration time				
			constant) may produce an error in the time of the arc part for the setting of the S-pattern acceleration/deceleration time constant.				
			The upper limit value of the actual arc part time is limited by				
			$\frac{2000000}{\text{STA}}$ for acceleration or by $\frac{2000000}{\text{STB}}$ for deceleration.				
			(Example) At the setting of STA=20000, STB=5000 and STC=200,				
			the actual arc part times are as follows:				
			Limited to 100[ms] since				
			During acceleration: $100[ms] = \frac{2000000}{20000} = 100[ms] < 200[ms].$				
			200[ms] as set since				
			During deceleration: $200[ms]$ $\frac{2000000}{}$ = $400[ms] > 200[ms]$.				
			5000 - 400[his] > 200[his].				

Class	No.	Symbol	Name and function	Initial value	Unit	Setting range	Control mode
	14	TQC	Torque command time constant Used to set the constant of a low pass filter in response to the torque command. Torque Torque command After filtered TQC: Torque command time constant	0	ms	0 to 20000	Т
S	15	*SNO	Station number setting Used to specify the station number for serial communication. Always set one station to one axis of servo amplifier. If one station number is set to two or more stations, normal communication cannot be made.	0	sta- tion	0 to 31	P·S·T
Basic parameters	16	*BPS	Serial communication function selection, alarm history clear Used to select the serial communication baudrate, select various communication conditions, and clear the alarm history. Serial baudrate selection 0: 9600 [bps] 1: 19200[bps] 2: 38400[bps] 3: 57600[bps] Alarm history clear 0: Invalid 1: Valid When alarm history clear is made valid, the alarm history is cleared at next power-on. After the alarm history is cleared, the setting is automatically made invalid (reset to 0). Serial communication standard selection 0: RS-232C used 1: RS-485 used Serial communication response delay time 0: Invalid 1: Valid, reply sent after delay time of 800µs or more	0000		Refer to Name and function column.	P·S·T

Class	No.	Symbol			Name and function		Initial value	Unit	Setting range	Control mode	
Basic parameters	17	MOD	Analog me Used to se (Refer to S	election th	Analog monitor ch2 Servo motor speed (±8V/ Torque (±8V/max. torque) Motor speed (+8V/max. torque) Current command (±8V/ Command pulse frequer Droop pulses (±10V/20	output select ch (max. speed) e) speed) e) max. curren acy (±10V/50 128 pulses) 048 pulses) 192 pulses) 768 pulses)	t command)	0100		Refer to Name and function column.	P·S·T

Class	No.	Symbol	Name and function	Initial value	Unit	Setting range	Control mode
Basic parameters	18	*DMD	Status display selection Used to select the status display shown at power-on. O O	edback pu ulses/serv tor speed torque co ommand v ge/cumula	oltage	d voltage	P·S·T

Class	No.	Symbol			Name and fun	ction		Initial value	Unit	Setting range	Control mode
	19	*BLK		elect the refere	ence and write i			0000		Refer to Name and	P·S·T
			Set value	Operation	Basic parameters No. 0 to No. 19	Expansion parameters 1 No. 20 to No. 49	Expansion parameters 2 No. 50 to No. 84			function column.	
			0000 (Initial	Reference	0						
rs			value)	Write	0						
nete			000A	Reference Write	No. 19 only No. 19 only						
Basic parameters			000B	Reference	0	0					
sic p				Write Reference	0	\circ					
Ba			000C	Write	0	0					
			000E	Reference Write	0	0	0				
			100D	Reference	0						
			100B	Write	No. 19 only						
			100C	Reference Write	No. 19 only						
			100E	Reference	0	0	0				
				Write	No. 19 only						
Expansion parameters 1	20	*OP2	Used to se servo lock	write No. 19 only nction selection 2 sed to select restart after instantaneous power failure, ervo lock at a stop in speed control mode, and slight vibration appression control.						Refer to Name and function column.	s
		Slight vibration suppression control Made valid when auto tuning selection is set to "0400" in parameter No. 2. Used to suppress vibration at a stop. 0: Invalid 1: Valid									Р

Class	No.	Symbol		Name and function	Initial value	Unit	Setting range	Control mode
	21	*OP3	(Refer to Section 3.4.1.) 0 0 Puls 0: F	mand pulse selection) form of the pulse train input signal. — Command pulse train input form 0: Forward/reverse rotation pulse train 1: Signed pulse train 2: A/B phase pulse train lse train logic selection Positive logic Negative logic	0000		Refer to Name and function column.	Р
Expansion parameters 1	22	*OP4	VC/VLA voltage averagin O O VC/VLA Used analo or ans Set 0 tion ir to var ctuati	—How to make a stop when LSP/LSN signal is valid. (Refer to Section 5.2.3.) 0: Sudden stop 1: Slow stop a voltage averaging do set the filtering time when the log speed command (VC) voltage halog speed limit (VLA) is imported. O to vary the speed to voltage fluctuation real time. Increase the set value any the speed slower to voltage fluctuation.	0000		Refer to Name and function column.	P·S·T

Class	No.	Symbol	Name and function	Initial value	Unit	Setting range	Control mode
	23	FFC	Feed forward gain Used to set the feed forward gain. At the setting of 100%, droop pulses during constant-speed operation will be almost "zero". Note that sudden acceleration/deceleration will increase overshoot. As a guideline, set 1s or more as the acceleration/deceleration time constant to the rated speed when the feed forward gain is set to 100%.	0	%	0 to 100	P
	24	ZSP	Zero speed Used to set the output range of the zero speed signal (ZSP).	50	r/min	0 to 10000	P·S·T
	25	VCM	Analog speed command maximum speed Used to set the speed at the maximum input voltage (10V) of the analog speed command (VC). Set "0" to select the rated speed of the servo motor connected. Analog speed limit maximum speed	0	r/min	0 1 to 50000	S
			Used to set the speed at the maximum input voltage (10V) of the analog speed limit (VLA). Set "0" to select the rated speed of the servo motor connected.		r/min	1 to 50000	
	26	TLC	Analog torque command maximum output Used to set the output torque at the analog torque command voltage (TC = $\pm 8V$) of $\pm 8V$ on the assumption that the maximum torque is $\pm 100[\%]$. For example, set 50 to output (maximum torque $\pm 50/100$) at the TC of $\pm 8V$.	100	%	0 to 1000	Т
Expansion parameters 1	27	*ENR	Encoder output pulses Used to set the encoder pulses (A-phase, B-phase) output by the servo amplifier. Set the value 4 times greater than the A-phase or B-phase pulses. You can use parameter No. 54 to choose the output pulse setting or output division ratio setting. The number of A/B-phase pulses actually output is 1/4 times greater than the preset number of pulses. The maximum output frequency is 1.3Mpps (after multiplication by 4). Use this parameter within this range. For output pulse designation Set "0□□□" (initial value) in parameter No. 54. Set the number of pulses per servo motor revolution. Output pulse = set value [pulses/rev] At the setting of 5600, for example, the actually output A/B-phase pulses are as indicated below: A*B-phase output pulses = \frac{5600}{4} = 1400[pulse] For output division ratio setting Set "1□□□"in parameter No. 54. The number of pulses per servo motor revolution is divided by the set value. Output pulse = \frac{Resolution per servo motor revolution}{Set value} [pulses/rev] At the setting of 8, for example, the actually output A/B-phase pulses are as indicated below: A*B-phase output pulses = \frac{131072}{8} \cdot \frac{1}{4} = 4096[pulse]	4000	pulse/ rev	1 to 65535	P·S·T
	28	TL1	Internal torque limit 1 Set this parameter to limit servo motor-generated torque on the assumption that the maximum torque is 100[%]. When 0 is set, torque is not produced. (Note) TL O Internal torque limit 1 (Parameter No. 28) 1 Analog torque limit < internal torque limit 1 : Analog torque limit Analog torque limit > internal torque limit 1 : Internal torque limit 1 Note.0:TL-SG off (open) 1:TL-SG on(short) When torque is output in analog monitor output, this set value is the maximum output voltage (+8V). (Refer to Section 3.4.1, (5))	100	%	0 to 100	P∙S∙T

Class	No.	Symbol	Name and function	Initial value	Unit	Setting range	Control mode
	29	VCO	Analog speed command offset	Depends	mV	-999	S
			Used to set the offset voltage of the analog speed command (VC).	on servo		to	
			For example, if CCW rotation is provided by switching on forward	amplifier		999	
			rotation start (ST1) with 0V applied to VC, set a negative value.				
			When automatic VC offset is used, the automatically offset value is				
			set to this parameter. (Refer to Section6.3.)				
			The initial value is the value provided by the automatic VC offset				
			function before shipment at the VC-LG voltage of 0V.				
			Analog speed limit offset				T
			Used to set the offset voltage of the analog speed limit (VLA).				
			For example, if CCW rotation is provided by switching on forward				
			rotation selection (RS1) with 0V applied to VLA, set a negative value.				
			When automatic VC offset is used, the automatically offset value is				
			set to this parameter. (Refer to Section6.3.)				
			The initial value is the value provided by the automatic VC offset				
			function before shipment at the VLA-LG voltage of 0V.				-
	30	TLO	Analog torque command offset	0	mV	-999	T
			Used to set the offset voltage of the analog torque command (TC).			to	_
			Analog torque limit offset			999	S
			Used to set the offset voltage of the analog torque limit (TLA).	_			
	31	MO1	Analog monitor 1 offset	0	mV	-999	P·S·T
			Used to set the offset voltage of the analog monitor ch1 output (MO1).			to 999	
	32	MO2	Analog monitor 2 offset	0	mV	-999	P·S·T
			Used to set the offset voltage of the analog monitor ch2 output (MO2).			to 999	
-	33	MBR	Electromagnetic brake sequence output	100	ms	0	P S T
ers			Used to set the delay time (Tb) between electronic brake interlock			to	
net		an.	signal (MBR) and the base drive circuit is shut-off.			1000	ъ. с
Expansion parameters 1	34	GD2	Ratio of load inertia moment to servo motor inertia moment	70	0.1	0	P·S
pa			Used to set the ratio of the load inertia moment to the servo motor		times	to	
ion			shaft inertia moment. When auto tuning mode 1 and interpolation			3000	
sur			mode is selected, the result of auto tuning is automatically used.				
хbя			(Refer to section 7.1.1)				
田	35	PG2	In this case, it varies between 0 and 1000. Position loop gain 2	35	no d/a	1	P
	33	PGZ	Used to set the gain of the position loop.	33	rad/s	1 to	Г
			Set this parameter to increase the position response to level load			to 1000	
			disturbance. Higher setting increases the response level but is liable			1000	
			to generate vibration and/or noise.				
			When auto tuning mode 1,2 and interpolation mode is selected, the				
			result of auto tuning is automatically used.				
	36	VG1	Speed loop gain 1	177	rad/s	20	P•S
			Normally this parameter setting need not be changed.			to	
			Higher setting increases the response level but is liable to generate			8000	
			vibration and/or noise.				
			When auto tuning mode 1 · 2, manual mode and interpolation mode				
			is selected, the result of auto tuning is automatically used.				
	37	VG2	Speed loop gain 2	817	rad/s	20	P•S
			Set this parameter when vibration occurs on machines of low rigidity			to	
			or large backlash. Higher setting increases the response level but is			20000	
			liable to generate vibration and/or noise.				
			When auto tuning mode 1 · 2 and interpolation mode is selected, the				
			result of auto tuning is automatically used.				
	38	VIC	Speed integral compensation	48	ms	1	P•S
			Used to set the integral time constant of the speed loop.			to	
			Higher setting increases the response level but is liable to generate			1000	
			vibration and/or noise.				
Ī			When auto tuning mode 1 • 2 and interpolation mode is selected, the				

Class	No.	Symbol	Name and function	Initial	Unit	Setting	Control
	39	VDC	Speed differential compensation	value 980		range 0	mode P·S
	39	VDC	Used to set the differential compensation.	900		to	F-3
			Made valid when the proportion control signal is switched on.			1000	
	40		For manufacturer setting	0	<u> </u>	1000	
			Must not be changed.				
	41	*DIA	Input signal automatic ON selection	0000		Refer to	P·S·T
			Used to set automatic ON of SON, LSP and LSN.			Name	
						and	
						function	
			Servo-on signal (SON) input selection 0: Switched on/off by external input.			column.	
			1: Switched on automatically in servo				
			amplifier.				
			(No need of external wiring)				
			Forward rotation stroke end signal				P•S
			(LSP) input selection 0: Switched on/off by external input.				
			1: Switched on automatically in servo				
			amplifier.				
			(No need of external wiring)				
			Reverse rotation stroke end signal (LSN)				
			input selection 0: Switched on/off by external input.		\		
rs 1			1: Switched on automatically in servo		\		
nete			amplifier.				
Expansion parameters 1			(No need of external wiring)		1		
d u	42	*DI1	Input signal selection 1	0003		Refer to	
nsic			Used to assign the control mode changing signal input pins and to set			Name	
xpa			the clear signal.			and function	
Щ						column.	
			Control change signal (LOP) in-				P/S S/T
			put pin assignment Used to set the control mode				T/P
			change signal input connector				1/1
			pins. Note that this parameter is				
			made valid when parameter No.				
			0 is set to select the position/spe- ed, speed/torque or torque/posi-				
			tion change mode.				
			Set value Connector pin No.				
			0 CN1B-5				
			1 CN1B-14				
			2 CN1A-8				
			3 CN1B-7				
			4 CN1B-8				ļ
			5 CN1B-9				
					\		
			Clear signal (CR) selection 0: Droop pulses are cleared on the				P·S·T
			leading edge.				
			1: While on, droop pulses are always cleared.				

Class	No.	Symbol		Name and	d function		Initial	Unit	Setting	Control
Ciass		•			a ranouon		value	O'III	range	mode
	43	*DI2	Input signal selecti				0111		Refer to	P·S·T
			_		-	0.42 is set to assign			Name	
			the control change	-	-	F			and	
			Allows any input	-	_	fer according to the			function column.	
			control mode.	ing digit and as.	signed signar dir.	ier according to the			column.	
			0	7						
					_					
				Position control mode	Input signals o	£				
				peed control	CN1B-pin 5					
				node	selected.					
				control mode	J					
			-	_	n each control r	node are indicated				
			below by their syn Setting of any oth		invalid					
			Setting of any our							
			Set value		Note) Control mod					
				P	S	T				
			0	govi	govi	901				
			1	SON	SON	SON				
			2	RES	RES	RES				
s 1			3	PC	PC					
eter			4	TL	TL					
Expansion parameters 1			5	CR	CR	CR				
ı paı			6		SP1	SP1				
sior			7		SP2	SP2				
pan			8		ST1	RS2				
Ä			9		ST2	RS1				
			A		SP3	SP3				
			В	CM1						
			С	CM2						
			D	TL1	TL1	TL1				
			Е	CDP	CDP	CDP				
			Note: P: Position							
			S: Speed co	ntrol mode ontrol mode						
	44	*DI3	Input signal selecti				0222		Refer to	P·S·T
	11	D10	Allows any input		gned to CN1B-pi	n 14.	0222	\	Name	1 5 1
				-	_	e same as in input		\	and	
			signal selection 2	(parameter No.	43).			\	function	
			0					\	column.	
				_ Position	.					
				control mode	Input signals of	:		\		
			s	peed control	CN1B-pin 14			\		
				ode	selected.			\		
				control mode	J ,			\		
						No. 42 is set to		\		
			assign the control	change signal (I	LOP) to CN1B-pi	11 14.		L \	V	

Class	No.	Symbol	Name and function	Initial value	Unit	Setting range	Control mode
	45	*DI4	Input signal selection 4 (CN1A-8)	0665		Refer to	P·S·T
			Allows any input signal to be assigned to CN1A-pin 8.		\	Name	
			The assignable signals and setting method are the same as in input		\	and	
			signal selection 2 (parameter No. 43).		\	function	
					\	column.	
			Position		\		
			control mode Input signals of		\		
			Speed control CN1A-pin 8		\		
			mode selected.		\		
			☐ Torque control mode		\		
			This parameter is unavailable when parameter No. 42 is set to		\		
	40	*DI	assign the control change signal (LOP) to CN1 A-pin 8. Input signal selection 5 (CN1B-7)	0770	\	D.C t.	р.с.т
	46	*DI5	Allows any input signal to be assigned to CN1B-pin 7.	0770	\	Refer to Name	P·S·T
			The assignable signals and setting method are the same as in input		\	and	
			signal selection 2 (parameter No. 43).		\	function	
			0		\	column.	
					\	corariii	
			Position		\		
			control mode Input signals of		\		
			Speed control CN1B-pin 7 mode selected.		\		
			Torque control mode		\		
			This parameter is unavailable when parameter No. 42 is set to		\		
.s 1			assign the control change signal (LOP) to CN1 B-pin 7.		\		
etei	47	*DI6	Input signal selection 6 (CN1B-8)	0883		Refer to	P•S•T
ram			Allows any input signal to be assigned to CN1B-pin 8.			Name	
paı			The assignable signals and setting method are the same as in input signal selection 2 (parameter No. 43).			and	
sion					\	function	
Expansion parameters 1						column.	
Exj			Position		\		
			control mode Input signals of				
			Speed control CN1B-pin 8		\		
			mode selected. —Torque control mode		\		
			This parameter is unavailable when parameter No. 42 is set to		\		
			assign the control change signal (LOP) to CN1B-pin 8.		\		
			When "Used in absolute position detection system" is selected in		\		
			parameter No. 1, CN1B-pin 8 is in the ABS transfer mode (ABSM).		\		
			(Refer to Section 15.5.)		\		
	48	*DI7	Input signal selection 7 (CN1B-9)	0994	\	Refer to	P·S·T
			Allows any input signal to be assigned to CN1B-pin 9. The assignable signals and setting method are the same as in input		\	Name	
			signal selection 2 (parameter No. 43).		\	and	
					\	function column.	
					\	colullii.	
			Position		\		
			control mode Input signals of				
			Speed control CN1B-pin 9				
			mode selected. —Torque control mode		\		
			This parameter is unavailable when parameter No. 42 is set to		\		
			assign the control change signal (LOP) to CN1B-pin 9.		\		
			When "Used in absolute position detection system" is selected in		\		
			parameter No. 1, CN1B-pin 9 is in the ABS request mode (ABSR).		\		
			(Refer to Section 15.5.)		\		

Class	No.	Symbol		Name and function						Initial	Unit	Setting	Control	
<u> </u>		Ť	0 :		1 2						value		range	mode
	49	*DO1	_	tput signal selection 1 Jsed to select the connector pins to output the alarm code, warning					0000		Refer to	P S T		
							_		utput the alari	m code, warni	ng		Name	
			(WNC	G) and	d batter	y warr	ning (E	3WNG).					and	
			0										function	
													column.	
					L	Setti	ng of a	alarm cod	de output					
								(Connector pins					
						Set v	/alue	CN1B-19		CN1A-19				
						(ZSP	INP or SA	RD				
						1	1 A	Alarm code	is output at alar	m occurrence.				
					(Note) Alarm	code							
					<u> </u>	CN1A		Alarm	Name	•				
						pin 18		display						
								88888	Watchdog					
								AL.12	Memory error 1					
								AL.13	Clock error					
								AL.15	Memory error 2					
					0	0	0	AL.17	Board error 2					
								AL.19	Memory error 3					
								AL.37	Parameter error	r				
								AL.8A	Serial communicat					
								AL.8E	Serial communi					
					0	0	1	AL.30	Regenerative er	ror				
rs 1					0	1	0	AL.33	Overvoltage					
eteı					0	1	U	AL.10 AL.45	Undervoltage Main circuit dev	vice everbeat				
am								AL.46	Servo motor ove					
Expansion parameters 1					0	1	1	AL.50	Overload 1	ineat				
on								AL.51	Overload 2					
ınsi						_		AL.24	Main circuit					
xba					1	0	0	AL.32	Overcurrent					
田								AL.31	Overspeed					
					1	0	1	AL.35	Command pulse	frequency error				
								AL.52	Error excessive					
								AL.16	Encoder error 1					
					1	1	0		Motor combinat					
								AL.20	Encoder error 2					
								AL.25	Absolute positio	on erase				
					Note			off (open)						
					- Setting			on (short) (WNG) o						
						-	_		o output warnin	ıa.				
									ction will be un					
					Se	t value	•	Connect	or pin No.					
						0			utput.					
						1			A-19					
						2			B-18					
						3		CN1	A-18					
						4			B-19					
						5			1B-6					
									BWNG) output					
									o output battery					
						_			ection will be un					
						this für imeter.		as in the	second digit of	uliS				
								setting h	as priority.					

Class	No.	Symbol	Name and function	Initial value	Unit	Setting range	Control mode
	50		For manufacturer setting	0000		Tarige	Thode
	00		Must not be changed.	0000			
	51	*OP6	Function selection 6	0000	\	Refer to	P·S·T
			Used to select the operation to be performed when the alarm reset		\	Name	
			signal switches on.		\	and	
			0 00		\	function	
					\	column.	
					\		
			Operation to be performed when the alarm reset signal switches on		\		
			0: Base circuit not switched off		\		
			1: Base circuit switched off		\		
	52		For manufacturer setting	0000			
			Must not be changed.				
	53	*OP8	Function selection 8	0000	\	Refer to	P•S•T
			Used to select the protocol of serial communication.		\	Name	
			0 0		\	and	
					\	function column.	
			Distance of the selection		\	column.	
			Protocol checksum selection 0: Yes (checksum added)		\		
2			1: No (checksum not added)		\		
ers			Protocol checksum selection		\		
ımet			0: With station numbers		\		
para			1: No station numbers		\ \		
Expansion parameters	54	*OP9	Function selection 9	0000		Refer to	P·S·T
ans			Use to select the command pulse rotation direction, encoder output pulse direction and encoder pulse output setting.			Name and	
Exp					\	function	
						column.	
			Servo motor rotation direction changing				
			Changes the servo motor rotation				
			direction for the input pulse train.				
			Servo motor rotation direction Set value At forward rotation At reverse rotation				
			pulse input (Note) pulse input (Note)				
			0 CCW CW 1 CCW				
			1 CW CCW Note. Refer to Section 3.4.1, (1), (a).				
			Encoder pulse output phase changing				
			Changes the phases of A, B-phase encoder pulses output .				
			Set value Servo motor rotation direction				
			CCW CW				
			A phase A phase				
			B phase B phase				
			A phase A phase				
			B phase B phase				
			Encoder output pulse setting selection (refer to parameter No. 27)				
			0: Output pulse setting 1: Division ratio setting				
			1. שנו ווטופועוע הנוווון				

Class	No.	Symbol				Na	ame and	function	n			Initial value	Unit	Setting range	Control mode
	55	*OPA	Used to	unction selection A Used to select the position command acceleration/deceleration time constant (parameter No. 7) control system.						0000		Refer to Name and function column.	P		
				Position command acceleration/deceleration time constant control 0: Primary delay 1: Linear acceleration/deceleration						ion					
	56	SIC					ut select		ne-out pe	riod in	ı [s]	0		0	P·S·T
							check is		_		. [5].		s	1 to 60	
	57				urer sett							10			
			Must no												
	58	NH1	Used t	to sele		machi	ion filter ine reson		uppressio	on filte	r.	0000		Refer to Name and	P•S•T
			0											function column.	
ers 2					9	Set "00		ou have	on e set adar pe "valid"						
Expansion parameters				Setting	(Frequency		eter No. 6 Frequency		□□or □2 Frequency		Frequency				
n pa				value 00	Invalid	value 08	562.5	value 10	281.3	value 18	187.5				
nsio				01	4500	09	500	11	264.7	19	180				
ĭxpa				02	2250	0A	450	12	250	1A	173.1				
				03	1500 1125	0B 0C	409.1 375	13 14	236.8 225	1B 1C	166.7 160.1				
				05	900	0D	346.2	15	214.3	1D	155.2				
				06 07	750 642.9	0E 0F	321.4 300	16 17	204.5 195.7	1E 1F	150 145.2				
				0,			epth sele		100		110.2				
						Setting value	Depth	Gai	n						
					-	0	Deep	-400	lB						
					-	1	to	-140							
						2 3	Shallow	-8d -4d							
	59	NH2	Machine	e reso	nance su	ppress	ion filter	2	_			0000	\	Refer to	P·S·T
			Used t	to set	the mach	ine res	sonance s	suppre	ssion filte	er.			\	Name	
			0										\	and function	
			_										\	column.	
						h frequ		param	eter No. 5	58			\		
					Ho	wever,	you need	not se	t "00" if y	ou hav			\		
				set adaptive vibration suppression control to be "valid" or "held".						\					
						h depth							\		
					Sar	ne sett	ing as in	param	eter No. 5	58			\		

Class	No.	Symbol	Name and function	Initial value	Unit	Setting range	Control mode
Expansion parameters 2	60	LPF	Low-pass filter/adaptive vibration suppression control Used to selection the low-pass filter and adaptive vibration suppression control. (Refer to Chapter 8.)	0000		Refer to Name and function column.	P·S·T
	61	GD2B	Ratio of load inertia moment to servo motor inertia moment 2 Used to set the ratio of load inertia moment to servo motor inertia moment when gain changing is valid.	70	×0.1 times	0 to 3000	P•S
	62	PG2B	Position control gain 2 changing ratio Used to set the ratio of changing the position control gain 2 when gain changing is valid. Made valid when auto tuning is invalid.	100	%	10 to 200	Р
	63	VG2B	Speed control gain 2 changing ratio Used to set the ratio of changing the speed control gain 2 when gain changing is valid. Made valid when auto tuning is invalid.	100	%	10 to 200	P·S
	64	VICB	Speed integral compensation changing ratio Used to set the ratio of changing the speed integral compensation when gain changing is valid. Made valid when auto tuning is invalid.	100	%	50 to 1000	P•S

Class	No.	Symbol	Name and function	Initial value	Unit	Setting range	Control mode
	65	*CDP	Gain changing selection Used to select the gain changing condition. (Refer to Section 8.3.) Gain changing selection Gains are changed in accordance with the settings of parameters No. 61 to 64 under any of the following conditions: 0: Invalid 1: Gain changing (CDP) signal is ON 2: Command frequency is equal to higher than parameter No. 66 setting 3: Droop pulse value is equal to higher than parameter No. 66 setting 4: Servo motor speed is equal to higher than parameter No. 66 setting	0000		Refer to Name and function column.	P·S
Expansion parameters 2	66	CDS	Gain changing condition Used to set the value of gain changing condition (command frequency, droop pulses, servo motor speed) selected in parameter No. 65.The set value unit changes with the changing condition item. (Refer to Section 8.3.)	10	kpps pulse r/min	10 to 9999	P•S
Expansion	67	CDT	Gain changing time constant Used to set the time constant at which the gains will change in response to the conditions set in parameters No. 65 and 66. (Refer to Section 8.3.)	1	ms	0 to 100	P•S
	68		For manufacturer setting Must not be changed.	0			
	69	CMX2	Command pulse multiplying factor numerator 2 Used to set the multiplier for the command pulse. Setting "0" automatically sets the connected motor resolution.	1		0·1 to 65535	P
	70	CMX3	Command pulse multiplying factor numerator 3 Used to set the multiplier for the command pulse. Setting "0" automatically sets the connected motor resolution.	1		0·1 to 65535	Р
	71	CMX4	Command pulse multiplying factor numerator 4 Used to set the multiplier for the command pulse. Setting "0" automatically sets the connected motor resolution.	1		0·1 to 65535	Р
	72	SC4	Internal speed command 4 Used to set speed 4 of internal speed commands.	200	r/min	0 to instantaneous	S
			Internal speed limit 4 Used to set speed 4 of internal speed limits.			permi- ssible speed	Т

5. PARAMETERS

Class	No.	Symbol	Name and function	Initial value	Unit	Setting range	Control mode
	73	SC5	Internal speed command 5 Used to set speed 5 of internal speed commands.	300	r/min	0 to instantaneous	S
			Internal speed limit 5 Used to set speed 5 of internal speed limits.			permi- ssible speed	Т
	74	SC6	Internal speed command 6 Used to set speed 6 of internal speed commands.	500	r/min	0 to instantaneous	S
			Internal speed limit 6 Used to set speed 6 of internal speed limits.			permi- ssible speed	Т
ers 2	75	SC7	Internal speed command 7 Used to set speed 7 of internal speed commands.	800	r/min	0 to instantaneous	S
Expansion parameters			Internal speed limit 7 Used to set speed 7 of internal speed limits.			permi- ssible speed	T
Expansion	76	TL2	Internal torque limit 2 Set this parameter to limit servo motor torque on the assumption that the maximum torque is 100[%]. When 0 is set, torque is not produced. When torque is output in analog monitor output, this set value is the maximum output voltage (+8V). (Refer to Section 3.4.1, (5))	100	%	0 to 100	P•S•T
	77		For manufacturer setting	00			
	78		Must not be changed.	10000			
	79			10			
	80			10			
	81			100			
	82			100			
	83			100			
	84			0			

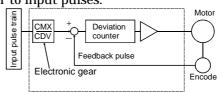
5. PARAMETERS

5.2 Detailed description

5.2.1 Electronic gear

ACAUTION

Wrong setting can lead to unexpected fast rotation, causing injury.


POINT

- The guideline of the electronic gear setting range is $\frac{1}{50} < \frac{\text{CMX}}{\text{CDV}} < 500$. If the set value is outside this range, noise may be generated during
 - If the set value is outside this range, noise may be generated during acceleration/ deceleration or operation may not be performed at the preset speed and/or acceleration/deceleration time constants.
- The following specification symbols are required to calculate the electronic gear.

(1) Concept of electronic gear

The machine can be moved at any multiplication factor to input pulses.

$$\frac{\text{CMX}}{\text{CDV}} = \frac{\text{Parameter No.3}}{\text{Parameter No.4}}$$

The following setting examples are used to explain how to calculate the electronic gear:

POINT

• The following specification symbols are required to calculate the electronic gear

Pb: Ballscrew lead [mm]

n : Reduction ratio

Pt : Servo motor resolution [pulses/rev]

 $\Delta \ell_0$: Travel per command pulse [mm/pulse]

ΔS: Travel per servo motor revolution [mm/rev]

 $\Delta\theta^{\circ}$: Angle per pulse [°/pulse]

 $\Delta\theta$: Angle per revolution [°/rev]

(a) For motion in increments of 10µm per pulse

Machine specifications

Ballscrew lead Pb =10 [mm]

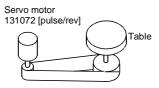
Reduction ratio: n = 1/2

Servo motor resolution: Pt = 131072 [pulses/rev]

$$\frac{CMX}{CDV} = \Delta \ell_0 \cdot \frac{Pt}{\Delta S} = \Delta \ell_0 \cdot \frac{Pt}{n \cdot Pb} = 10 \times 10^{-3} \cdot \frac{131072}{1/2 \cdot 10} = \frac{262144}{1000} = \frac{32768}{125}$$

Hence, set 32768 to CMX and 125 to CDV.

(b) Conveyor setting example


For rotation in increments of 0.01° per pulse

Machine specifications

Table: 360°/rev

Reduction ratio: n = 4/64

Servo motor resolution: Pt = 131072 [pulses/rev]

Timing belt: 4/64

$$\frac{\text{CMX}}{\text{CDV}} = \Delta \theta^{\circ} \cdot \frac{\text{Pt}}{\Delta \theta} = 0.01 \cdot \frac{131072}{4/64 \cdot 360} = \frac{65536}{1125}$$
 (5.2)

Since CMX is not within the setting range in this status, it must be reduced to the lowest term. When CMX has been reduced to a value within the setting range, round off the value to the nearest unit.

$$\frac{\text{CMX}}{\text{CDV}} = \frac{65536}{1125} = \frac{26214.4}{450} \cong \frac{26214}{450}$$

Hence, set 26214 to CMX and 450 to CDV.

POINT

For unlimited one-way rotation, e.g. an index table, indexing positions will be missed due to cumulative error produced by rounding off.

For example, entering a command of 36000 pulses in the above example causes the table to rotate only:

$$36000 \cdot \frac{26214}{450} \cdot \frac{1}{131072} \cdot \frac{4}{64} \cdot 360^{\circ} = 359.995^{\circ}$$

Therefore, indexing cannot be done in the same position on the table.

(2) Instructions for reduction

The calculated value before reduction must be as near as possible to the calculated value after reduction

In the case of (1), (b) in this section, an error will be smaller if reduction is made to provide no fraction for CDV. The fraction of Expression (5.1) before reduction is calculated as follows.

$$\frac{\text{CMX}}{\text{CDV}} = \frac{65536}{1125} = 58.25422.$$
 (5.2)

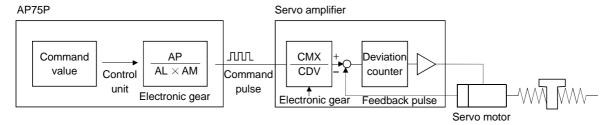
The result of reduction to provide no fraction for CMX is as follows.

$$\frac{\text{CMX}}{\text{CDV}} = \frac{65536}{1125} = \frac{32768}{562.5} \cong \frac{32768}{563} = 58.20249 \dots (5.3)$$

The result of reduction to provide no fraction for CDV is as follows.

$$\frac{\text{CMX}}{\text{CDV}} = \frac{65536}{1125} = \frac{26214.4}{450} \cong \frac{26214}{450} = 58.25333.$$
 (5.4)

As a result, it is understood that the value nearer to the calculation result of Expression (5.2) is the result of Expression (5.4). Accordingly, the set values of (1), (b) in this section are CMX=26214, CDV=450.


(3) Setting for use of AD75P

The AD75P also has the following electronic gear parameters. Normally, the servo amplifier side electronic gear must also be set due to the restriction on the command pulse frequency (differential 400kpulse/s, open collector 200kpulse/s).

AP: Number of pulses per motor revolution

AL: Moving distance per motor revolution

AM: Unit scale factor

The resolution of the servo motor is 131072 pulses/rev. For example, the pulse command needed to rotate the servo motor is as follows

Servo motor speed [r/min]	Required pulse command
2000	131072×2000/60=4369066 pulse/s
3000	131072×3000/60=6553600 pulse/s

For the AD75P, the maximum value of the pulse command that may be output is 200kpulse/s in the open collector system or 400kpulse/s in the differential line driver system. Hence, either of the servo motor speeds exceeds the maximum output pulse command of the AD75P.

Use the electronic gear of the servo amplifier to run the servo motor under the maximum output pulse command of the AD75P.

To rotate the servo motor at 3000r/min in the open collector system (200kpulse/s), set the electronic gear as follows

$$f \cdot \frac{CMX}{CDV} = \frac{N_0}{60} \cdot pt$$

f : Input pulses [pulse/s]

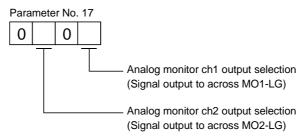
 $\begin{array}{lll} N_0 & : & Servo \ motor \ speed \ [r/min] \\ Pt & : & Servo \ motor \ resolution \ [pulse/rev] \end{array}$

$$200 \cdot \frac{\text{CMX}}{\text{CDV}} = \frac{3000}{60} \cdot 131072$$

$$\frac{\text{CMX}}{\text{CDV}} = \frac{3000}{60} \cdot \frac{131072}{200} = \frac{3000 \cdot 131072}{60 \cdot 200000} = \frac{4096}{125}$$

The following table indicates the electronic gear setting example (ballscrew lead = 10mm) when the AD75P is used in this way.

	Rated servo mo	otor speed		3000	r/min	2000r/min		
	Input system			Open collector	Differential line driver	Open collector	Differential line driver	
Servo amplifier	Max. input pulse fre	quency [kpulse/s]		200	500	200	500	
	Feedback pulse/revo	lution [pulse/rev]		131	072	131	1072	
	Electronic gear (CM	X/CDV)	DV)		2048/125	8192/375	4096/375	
	Command pulse free	quency [kpulse/s] (Note)		200	400	200	400	
	Number of pulses perviewed from AD75P	er servo motor revolution as [pulse/rev]	4000	10000	6000	15000		
		Minimum	AP	1	1	1	1	
AD75P		Minimum command unit 1pulse	AL	1	1	1	1	
	Electronic goor	Tpulse	AM	1	1	1	1	
	Electronic gear	Minimum command unit	AP	4000	10000	6000	15000	
		Minimum command unit 0.1µm	AL	1000	1000	1000	1000	
		υ. 1μιτι	AM	10	10	10	10	


Note: Command pulse frequency at rated speed

5.2.2 Analog output

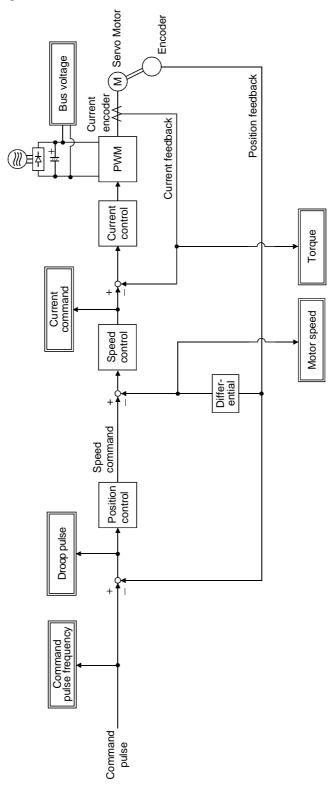
The servo status can be output to two channels in terms of voltage. Use this function when using an ammeter to monitor the servo status or synchronizing the torque/speed with the other servo.

(1) Setting

Change the following digits of parameter No.17:

Parameters No.31 and 32 can be used to set the offset voltages to the analog output voltages. The setting range is between -999 and 999mV.

Parameter No.	Description	Setting range [mV]
31	Used to set the offset voltage for the analog monitor ch1 output.	000 +- 000
32	Used to set the offset voltage for the analog monitor ch2 output.	-999 to 999


(2) Set content

The servo amplifier is factory-set to output the motor speed to ch1 and the torque to ch2. The setting can be changed as listed below by changing the parameter No.17 value:

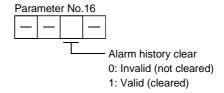
Refer to Appendix 2 for the measurement point.

Setting	Output item	Description	Setting	Output item	Description
0	Motor speed	Max. speed O Max. speed V O Max. speed O Wax. speed	6	Droop pulses (±10V/128pulse)	128[pulse] 0 128[pulse] CW direction 128[pulse]
1	Torque	Max. torque O Max. torque Driving in CCW direction O Max. torque	7	Droop pulses (±10V/2048pulse)	2048[pulse] 0 2048[pulse] CW direction
2	Motor speed	CW direction 8[V] direction Max. speed 0 Max. speed	8	Droop pulses (±10V/8192pulse)	8192[pulse] 0 8192[pulse] CW direction 10[V] CW direction
3	Torque	Driving in CW direction 8[V] CCW direction Max. torque 0 Max. torque	9	Droop pulses (±10V/32768pulse)	32768[pulse] 0 32768[pulse] CW direction
4	Current command (Torque command)	8[V] CCW direction Max. command current (Max. torque command) 0 Max. command current (Max. torque command) CW direction	A	Droop pulses (±10V/131072pulse)	131072[pulse] 0 131072[pulse] CW direction
5	Command pulse frequency	CCW direction 10[V] CDW direction 0 500kpps 0 500kpps CW direction	В	Bus voltage	8[V] 0 400[V]

(3) Analog monitor block diagram

5.2.3 Using forward/reverse rotation stroke end to change the stopping pattern

The stopping pattern is factory-set to make a sudden stop when the forward/reverse rotation stroke end is made valid. A slow stop can be made by changing the parameter No. 22 value.

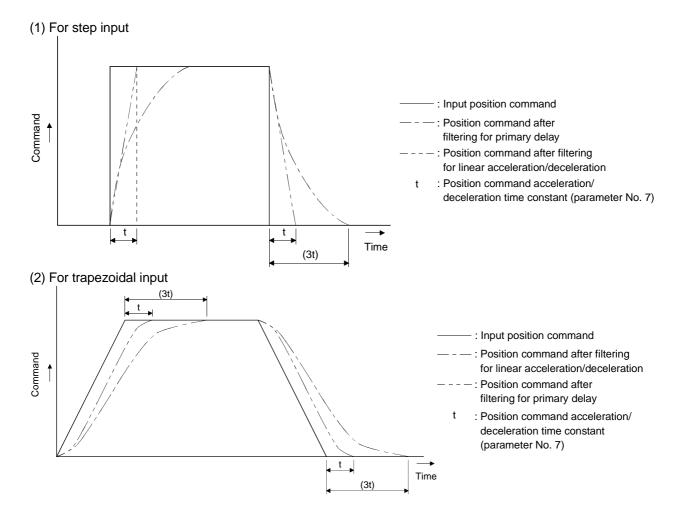

Parameter No.22 Setting		Stopping method
	Sudden stop	
	Position control mode	: Motor stops with droop pulses cleared.
(initial value)	Speed control mode	: Motor stops at deceleration time constant of zero.
	Slow stop	
0001	Position control mode	: The motor is decelerated to a stop in accordance with the parameter No. 7 value.
	Speed control mode	: The motor is decelerated to a stop in accordance with the parameter No. 12 value.

5.2.4 Alarm history clear

The servo amplifier stores one current alarm and five past alarms from when its power is switched on first. To control alarms which will occur during operation, clear the alarm history using parameter No.16 before starting operation.

Clearing the alarm history automatically returns to " $\Box\Box\Box\Box\Box$ ".

After setting, this parameter is made valid by switch power from OFF to ON.

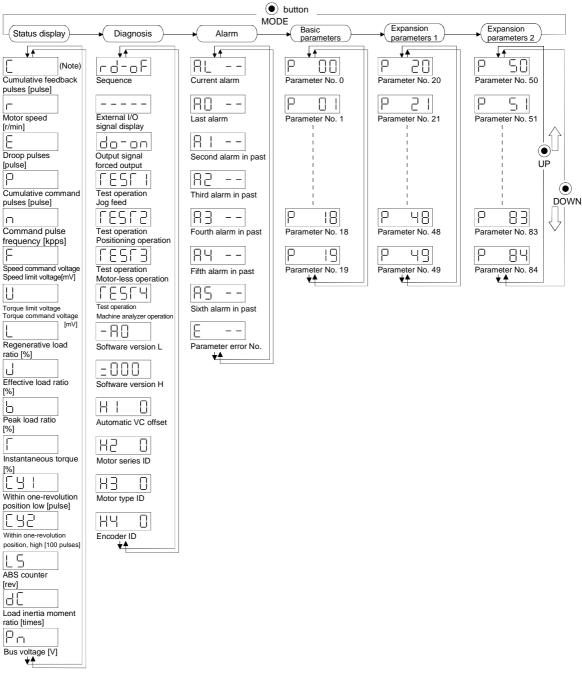


5.2.5 Position smoothing

By setting the position command acceleration/deceleration time constant (parameter No.7), you can run the servo motor smoothly in response to a sudden position command.

The following diagrams show the operation patterns of the servo motor in response to a position command when you have set the position command acceleration/deceleration time constant.

Choose the primary delay or linear acceleration/deceleration in parameter No. 55 according to the machine used.


MEMO	

6. DISPLAY AND OPERATION

6.1 Display flowchart

Use the display (5-digit, 7-segment LED) on the front panel of the servo amplifier for status display, parameter setting, etc. Set the parameters before operation, diagnose an alarm, confirm external sequences, and/or confirm the operation status. Press the "MODE" "UP" or "DOWN" button once to move to the next screen.

To refer to or set the expansion parameters, make them valid with parameter No. 19 (parameter write disable).

Note: The initial status display at power-on depends on the control mode.

Position control mode: Cumulative feedback pulses(C), Speed control mode: Motor speed(r),

Torque control mode: Torque command voltage(U)

Also, parameter No. 18 can be used to change the initial indication of the status display at power-on.

6.2 Status display

The servo status during operation is shown on the 5-digit, 7-segment LED display. Press the "UP" or "DOWN" button to change display data as desired. When the required data is selected, the corresponding symbol appears. Press the "SET" button to display its data. At only power-on, however, data appears after the symbol of the status display selected in parameter No. 18 has been shown for 2[s].

The servo amplifier display shows the lower five digits of 16 data items such as the motor speed.

6.2.1 Display examples

The following table lists display examples:

The following table lists display examples:				
Item	Status	Displayed data Servo amplifier display		
Motor speed	Forward rotation at 3000r/min			
	Reverse rotation at 3000r/min	Reverse rotation is indicated by "-".		
Load inertia moment	15.5 times	155		
Multi- revolution counter	11252pulse	 71 17		
		Negative value is indicated by the lit decimal points in the upper four digits.		

6.2.2 Status display list

The following table lists the servo statuses that may be shown:

Refer to Appendix 2 for the measurement point.

Name	Symbol	Unit	Description	Display range
Cumulative feedback pulses	С	pulse	Feedback pulses from the servo motor encoder are counted and displayed. The value in excess of ±99999 is counted, bus since the servo amplifier display is five digits, it shows the lower five digits of the actual value. Press the "SET" button to reset the display value to zero. Reverse rotation is indicated by the lit decimal points in the upper four digits.	-99999 to 99999
Servo motor speed	r	r/min	The servo motor speed is displayed. The value rounded off is displayed in $\times 0.1 \text{r/min}$.	-5400 to 5400
Droop pulses	Е	pulse	The number of droop pulses in the deviation counter is displayed. When the servo motor is rotating in the reverse direction, the decimal points in the upper four digits are lit. Since the servo amplifier display is five digits, it shows the lower five digits of the actual value. The number of pulses displayed is not yet multiplied by the electronic graph.	-99999 to 99999
Cumulative command pulses	P	pulse	gear. The position command input pulses are counted and displayed. As the value displayed is not yet multiplied by the electronic gear (CMX/CDV), it may not match the indication of the cumulative feedback pulses. The value in excess of ±99999 is counted, but since the servo amplifier display is five digits, it shows the lower five digits of the actual value. Press the "SET" button to reset the display value to zero. When the servo motor is rotating in the reverse direction, the decimal points in the upper four digits are lit.	-99999 to 99999
Command pulse frequency	n	kpps	The frequency of the position command input pulses is displayed. The value displayed is not multiplied by the electronic gear (CMX/CDV).	-800 to 800
Analog speed command voltage Analog speed limit voltage	F	V	(1) Torque control mode Analog speed limit (VLA) voltage is displayed. (2) Speed control mode Analog speed command (VC) voltage is displayed.	-10.00 to 10.00
Analog torque command voltage Analog torque limit voltage	U	V	 (1) Position control mode, speed control mode	0 to +10V -10 to
Regenerative load ratio	L	%	The ratio of regenerative power to permissible regenerative power is displayed in %.	+10V 0 to 100
Effective load ratio	J	%	The continuous effective load torque is displayed. The effective value is displayed relative to the rated torque of 100%.	0 to 300
Peak load ratio	b	%	The maximum torque generated during acceleration/deceleration, etc. The highest value in the past 15 seconds is displayed relative to the rated torque of 100%.	0 to 400
Instantaneous torque	Т	%	Torque that occurred instantaneously is displayed. The value of the torque that occurred is displayed in real time relative to the rate torque of 100%.	0 to 400
Within one-revolution position low	Cy1	pulse	Position within one revolution is displayed in encoder pulses. The value returns to 0 when it exceeds the maximum number of pulses. The value is incremented in the CCW direction of rotation.	0 to 99999

6. DISPLAY AND OPERATION

Name	Symbol	Unit	Description	Display range
Within one-revolution	Cy2	100	The within one-revolution position is displayed in 100 pulse	0
position high		pulse	increments of the encoder.	to
			The value returns to 0 when it exceeds the maximum number of	1310
			pulses.	
			The value is incremented in the CCW direction of rotation.	
ABS counter	LS	rev	Travel value from the home position in the absolute position	-32768
			detection systems is displayed in terms of the absolute position	to
			detectors counter value.	32767
Load inertia moment	dC	0.1	The estimated ratio of the load inertia moment to the servo motor	0.0
ratio		Times	shaft inertia moment is displayed.	to
				300.0
Bus voltage	Pn	V	The voltage (across P-N) of the main circuit converter is displayed.	0
				to
				450

6.2.3 Changing the status display screen

The status display item of the servo amplifier display shown at power-on can be changed by changing the parameter No. 18 settings.

The item displayed in the initial status changes with the control mode as follows:

Control mode	Status display at power-on	
Position	Cumulative feedback pulses	
Position/speed	Cumulative feedback pulses/servo motor speed	
Speed	Servo motor speed	
Speed/torque	Servo motor speed/analog torque command voltage	
Torque	Analog torque command voltage	
Torque/position	Analog torque command voltage/cumulative feedback pulses	

6.3 Diagnostic mode

Name Dis		Display	Description
Sequence		- d - p F	Not ready. Indicates that the servo amplifier is being initialized or an alarm has occurred.
		-9-0-	Ready. Indicates that the servo was switched on after completion of initialization and the servo amplifier is ready to operate.
External I/O signal display		Refer to section 6.6.	Indicates the ON-OFF states of the external I/O signals. The upper segments correspond to the input signals and the lower segments to the output signals. Lit: ON Extinguished: OFF The I/O signals can be changed using parameters No. 43 to 49.
Output sig			The digital output signal can be forced on/off. For more information, refer to section 6.7.
Test operation mode	Jog feed		Jog operation can be performed when there is no command from the external command device. For details, refer to section 6.8.2.
	Positioning operation		The servo configuration software (MRZJW3-SETUP121E) is required for positioning operation. This operation cannot be performed from the operation section of the servo amplifier. Positioning operation can be performed once when there is no command from the external command device.
	Motorless operation		Without connection of the servo motor, the servo amplifier provides output signals and displays the status as if the servo motor is running actually in response to the external input signal. For details, refer to section 6.8.4.
	Machine analyzer operation		Merely connecting the servo amplifier allows the resonance point of the mechanical system to be measured. The servo configuration software (MRZJW3-SETUP121E or later) is required for machine analyzer operation.
Software	version Low		Indicates the version of the software.
Software	version High		Indicates the system number of the software.
Automatic VC offset		H : [If offset voltages in the analog circuits inside and outside the servo amplifier cause the servo motor to rotate slowly at the analog speed command (VC) or analog speed limit (VLA) of 0V, this function automatically makes zero-adjustment of offset voltages. When using this function, make it valid in the following procedure. Making it valid causes the parameter No. 29 value to be the automatically adjusted offset voltage. 1) Press "SET" once. 2) Set the number in the first digit to 1 with "UP"/"DOWN". 3) Press "SET". You cannot use this function if the input voltage of VC or VLA is ±0.4V or more.

Name	Display	Description
Motor series	H2 []	Press the "SET" button to show the motor series ID of the servo motor currently connected. For indication details, refer to the optional MELSERVO Servo Motor Instruction Manual.
Motor type	H3 []	Press the "SET" button to show the motor type ID of the servo motor currently connected. For indication details, refer to the optional MELSERVO Servo Motor Instruction Manual.
Encoder	H 4 []	Press the "SET" button to show the encoder ID of the servo motor currently connected. For indication details, refer to the optional MELSERVO Servo Motor Instruction Manual.

6.4 Alarm mode

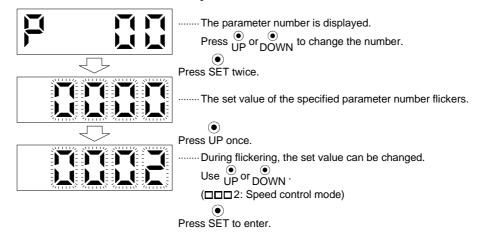
The current alarm, past alarm history and parameter error are displayed. The lower 2 digits on the display indicate the alarm number that has occurred or the parameter number in error. Display examples are shown below.

Name	Display	Description
Current alarm	\\ \\ \	Indicates no occurrence of an alarm.
		Indicates the occurrence of overvoltage (AL.33). Flickers at occurrence of the alarm.
Alarm history	AO 50	Indicates that the last alarm is overload 1 (AL.50).
	EE ! A	Indicates that the second alarm in the past is overvoltage (AL.33).
	A5 10	Indicates that the third alarm in the past is undervoltage (AL.10).
	IE ER	Indicates that the fourth alarm in the past is overspeed (AL.31).
	54	Indicates that there is no fifth alarm in the past.
	85	Indicates that there is no sixth alarm in the past.
Parameter error	E	Indicates no occurrence of parameter error (AL.37).
	E . 1	Indicates that the data of parameter No. 1 is faulty.

Functions at occurrence of an alarm

- (1) Any mode screen displays the current alarm.
- (2) The other screen is visible during occurrence of an alarm. At this time, the decimal point in the fourth digit flickers.
- (3) For any alarm, remove its cause and clear it in any of the following methods (for clearable alarms, refer to Section 10.2.1):
 - (a) Switch power OFF, then ON.
 - (b) Press the "SET" button on the current alarm screen.
 - (c) Turn on the alarm reset (RES) signal.
- (4) Use parameter No. 16 to clear the alarm history.
- (5) Pressing "SET" on the alarm history display screen for 2s or longer shows the following detailed information display screen. Note that this is provided for maintenance by the manufacturer.

(6) Press "UP" or "DOWN" to move to the next history.


6.5 Parameter mode

The parameters whose abbreviations are marked* are made valid by changing the setting and then switching power off once and switching it on again. Refer to Section 5.1.2.

(1) Operation example

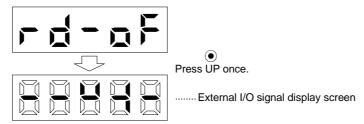
The following example shows the operation procedure performed after power-on to change the control mode (parameter No. 0) to the speed control mode.

Using the "MODE" button, show the basic parameter screen.

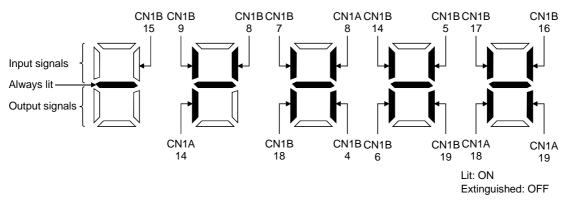
To shift to the next parameter, press the $\begin{tabular}{c} \bullet \ / \ \bullet \\ \mbox{UP DOWN button.} \end{tabular}$

When changing the parameter No. 0 setting, change its set value, then switch power off once and switch it on again to make the new value valid.

(2) Expansion parameters


To use the expansion parameters, change the setting of parameter No. 19 (parameter write disable). Refer to section 5.1.1.

6.6 External I/O signal display


The ON/OFF states of the digital I/O signals connected to the servo amplifier can be confirmed.

(1) Operation

Call the display screen shown after power-on. Using the "MODE" button, show the diagnostic screen.

(2) Display definition

The 7-segment LED shown above indicates ON/OFF.

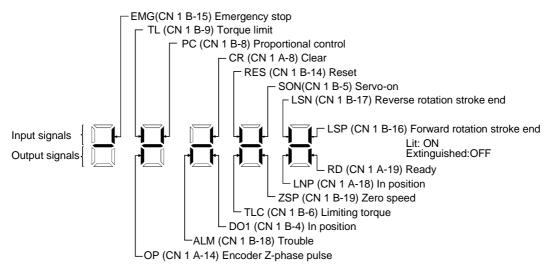
Each segment at top indicates the input signal and each segment at bottom indicates the output signal. The signals corresponding to the pins in the respective control modes are indicated below:

(a) Control modes and I/O signals

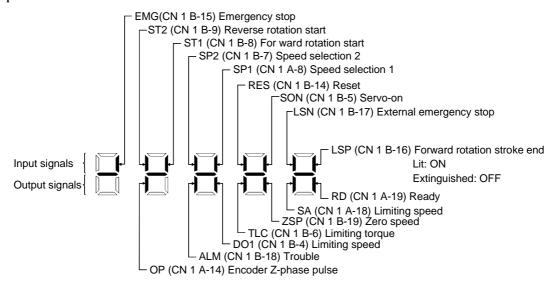
	Signal		(Note 2) Symbols of I/O signals in control modes					Related	
Connector	Pin No.	input/output (Note 1) I/O	Р	P/S	S	S/T	Т	T/P	parameter
	8	I	CR	CR/SP1	SP1	SP1	SP1	SP1/CR	No.43 to 48
CNIA	14	О	OP	OP	OP	OP	OP	OP	
CN1A	18	0	INP	INP/SA	SA	SA/—		-/INP	No.49
	19	0	RD	RD	RD	RD	RD	RD	No.49
	(Note 3) 4	0	DO1	DO1	DO1	DO1	DO1	DO1	
	5	I	SON	SON	SON	SON	SON	SON	No.43 to 48
	6	0	TLC	TLC	TLC	TLC/VLC	VLC	VLC/TLC	No.49
	7	I		LOP	SP2	LOP	SP2	LOP	No.43 to 48
	8	I	PC	PC/ST1	ST1	ST1/RS2	RS2	RS2/PC	No.43 to 48
CN1B	9	I	TL	TL/ST2	ST2	ST2/RS1	RS1	RS1/TL	No.43 to 48
CNIB	14	I	RES	RES	RES	RES	RES	RES	No.43 to 48
	15	I	EMG	EMG	EMG	EMG	EMG	EMG	
_	16	I	LSP	LSP	LSP	LSP/—		-/LSP	
	17	I	LSN	LSN	LSN	LSN/—		-/LSN	
	18	0	ALM	ALM	ALM	ALM	ALM	ALM	No.49
	19	0	ZSP	ZSP	ZSP	ZSP	ZSP	ZSP	No.1 · 49

Note: 1. I: Input signal, O: Output signal

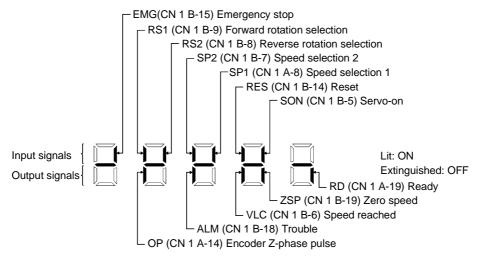
(b) Symbol and signal names


Symbol	Signal name	Symbol	Signal name
SON	Servo-on	EMG	Emergency stop
LSP	Forward rotation stroke end	LOP	Control change
LSN	Reverse rotation stroke end	TLC	Limiting torque
CR	Clear	VLC	Limiting speed
SP1	Speed selection 1	RD	Ready
SP2	Speed selection 2	ZSP	Zero speed
PC	Proportion control	INP	In position
ST1	Forward rotation start	SA	Speed reached
ST2	Reverse rotation start	ALM	Trouble
RS1	Forward rotation selection	WNG	Warning
RS2	Reverse rotation selection	OP	Encoder Z-phase pulse (open collector)
TL	Torque limit	BWNG	Battery warning
RES	Reset		

^{2.} P: Position control mode, S: Speed control mode, T: Torque control mode, P/S: Position/speed control change mode, S/T: Speed/torque control change mode, T/P: Torque/position control change mode


^{3.} The signal of CN1A-18 is always output.

(3) Default signal indications

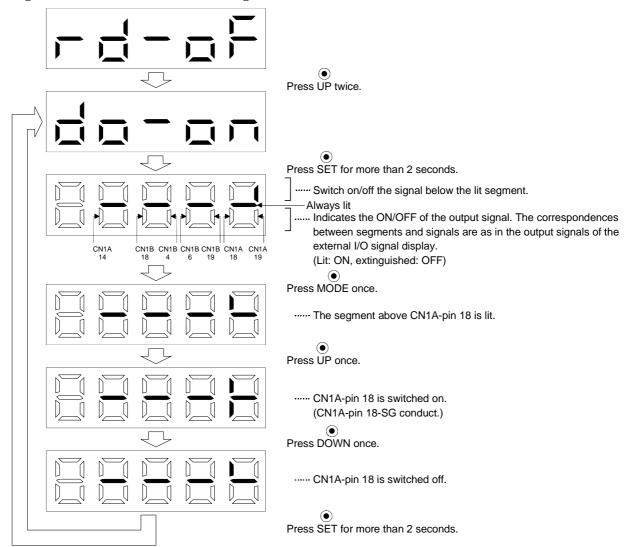

(a) Position control mode

(b) Speed control mode

(c) Torque control mode

6.7 Output signal (DO) forced output

POINT


• When the servo system is used in a vertical lift application, turning on the electromagnetic brake interlock signal after assigning it to pin CN1B-19 will release the electromagnetic brake, causing a drop. Take drop preventive measures on the machine side.

The output signal can be forced on/off independently of the servo status. This function is used for output signal wiring check, etc. This operation must be performed in the servo off state (SON signal off).

Operation

Call the display screen shown after power-on.

Using the "MODE" button, show the diagnostic screen.

6.8 Test operation mode

- The test operation mode is designed to confirm servo operation and not to confirm machine operation. In this mode, do not use the servo motor with the machine. Always use the servo motor alone.
- If any operational fault has occurred, stop operation using the forced stop (EMG) signal.

POINT

- The test operation mode cannot be used in the absolute position detection system. Use it after choosing "Incremental system" in parameter No. 1.
- The servo configuration software is required to perform positioning operation.
- Test operation cannot be performed if the servo-on (SON) signal is not turned OFF.

6.8.1 Mode change

Call the display screen shown after power-on. Choose jog operation/motor-less operation in the following procedure. Using the "MODE" button, show the diagnostic screen.

6.8.2 Jog operation

Jog operation can be performed when there is no command from the external command device.

(1) Operation

Connect EMG-SG to start jog operation and connect VDD-COM to use the internal power supply. Hold down the "UP" or "DOWN" button to run the servo motor. Release it to stop. When using the servo configuration software, you can change the operation conditions. The initial conditions and setting ranges for operation are listed below:

Item	Initial setting	Setting range	
Speed [r/min]	200	0 to instantaneous permissible speed	
Acceleration/deceleration time constant [ms]	1000	0 to 50000	

How to use the buttons is explained below:

Button	Description		
"I IP"	Press to start CCW rotation.		
UP	Release to stop.		
"DOWN!"	Press to start CW rotation.		
"DOWN"	Release to stop.		

If the communication cable is disconnected during jog operation performed by using the servo configuration software, the servo motor will be decelerated to a stop.

(2) Status display

You can confirm the servo status during jog operation.

Pressing the "MODE" button in the jog operation-ready status calls the status display screen. With this screen being shown, perform jog operation with the "UP" or "DOWN" button. Every time you press the "MODE" button, the next status display screen appears, and on completion of a screen cycle, pressing that button returns to the jog operation-ready status screen. For full information of the status display, refer to Section 6.2. In the test operation mode, you cannot use the "UP" and "DOWN" buttons to change the status display screen from one to another.

(3) Termination of jog operation

To end the jog operation, switch power off once or press the "MODE" button to switch to the next screen and then hold down the "SET" button for 2 or more seconds.

6.8.3 Positioning operation

PUNNI

• The servo configuration software is required to perform positioning operation.

Positioning operation can be performed once when there is no command from the external command device.

(1) Operation

Connect EMG-SG to start positioning operation and connect VDD-COM to use the internal power supply.

Pressing the "Forward" or "Reverse" button on the servo configuration software starts the servo motor, which will then stop after moving the preset travel distance. You can change the operation conditions on the servo configuration software. The initial conditions and setting ranges for operation are listed below:

Item	Initial setting	Setting range	
Travel distance [pulse]	10000 0 to 9999999		
Speed [r/min]	200	0 to instantaneous permissible speed	
Acceleration/deceleration time constant [ms]	1000	0 to 50000	

How to use the keys is explained below:

Key	Description		
"Forward"	Press to start positioning operation CCW.		
"Reverse"	Press to start positioning operation CW.		
"Pause"	Press during operation to make a temporary stop. Pressing the "Pause" button again erases the remaining distance. To resume operation, press the button that was pressed to start the operation.		

If the communication cable is disconnected during positioning operation, the servo motor will come to a sudden stop.

(2) Status display

You can monitor the status display even during positioning operation.

6.8.4 Motor-less operation

Without connecting the servo motor, you can provide output signals or monitor the status display as if the servo motor is running in response to external input signals. This operation can be used to check the sequence of a host programmable controller or the like.

(1) Operation

After turning off the signal across SON-SG, choose motor-less operation. After that, perform external operation as in ordinary operation.

(2) Status display

You can confirm the servo status during motor-less operation.

Pressing the "MODE" button in the motor-less operation-ready status calls the status display screen. With this screen being shown, perform motor-less operation. Every time you press the "MODE" button, the next status display screen appears, and on completion of a screen cycle, pressing that button returns to the motor-less operation-ready status screen. For full information of the status display, refer to Section 6.2. In the test operation mode, you cannot use the "UP" and "DOWN" buttons to change the status display screen from one to another.

(3) Termination of motor-less operation

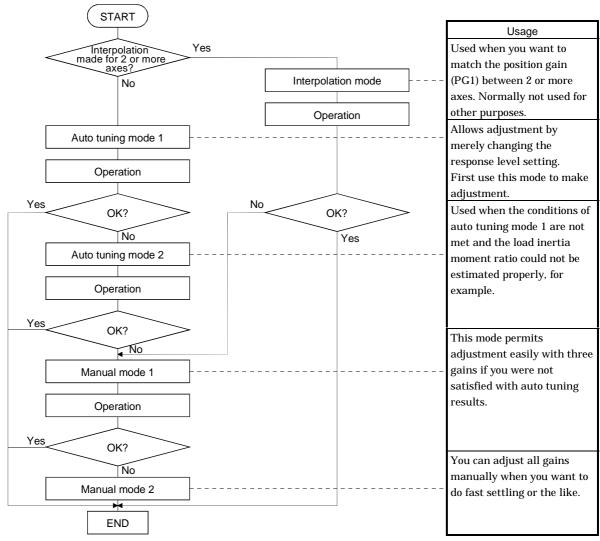
To terminate the motor-less operation, switch power off.

7. GENERAL GAIN ADJUSTMENT

POINT

• For use in the torque control mode, you need not make gain adjustment.

7.1 Different adjustment methods


7.1.1 Adjustment on a single servo amplifier

The gain adjustment in this section can be made on a single servo amplifier. For gain adjustment, first execute auto tuning mode 1. If you are not satisfied with the results, execute auto tuning mode 2, manual mode 1 and manual mode 2 in this order.

(1) Gain adjustment mode explanation

Gain adjustment mode	Parameter No. 2 setting	Estimation of load inertia moment ratio	Automatically set parameters	Manually set parameters
Auto tuning mode 1 (initial value)	010□	Always estimated	PG1 (parameter No. 6) GD2 (parameter No. 34) PG2 (parameter No. 35) VG1 (parameter No. 36) VG2 (parameter No. 37) VIC (parameter No. 38)	Response level setting of parameter No. 2
Auto tuning mode 2	020□	Fixed to parameter No. 34 value	PG1 (parameter No. 6) PG2 (parameter No. 35) VG1 (parameter No. 36) VG2 (parameter No. 37) VIC (parameter No. 38)	GD2 (parameter No. 34) Response level setting of parameter No. 2
Manual mode 1	030□		PG2 (parameter No. 35) VG1 (parameter No. 36)	PG1 (parameter No. 6) GD2 (parameter No. 34) VG2 (parameter No. 37) VIC (parameter No. 38)
Manual mode 2	040□			PG1 (parameter No. 6) GD2 (parameter No. 34) PG2 (parameter No. 35) VG1 (parameter No. 36) VG2 (parameter No. 37) VIC (parameter No. 38)
Interpolation mode	000□	Always estimated	GD2 (parameter No. 34) PG2 (parameter No. 35) VG2 (parameter No. 37) VIC (parameter No. 38)	PG1 (parameter No. 6) VG1 (parameter No. 36)

7.1.2 Adjustment using servo configuration software

This section gives the functions and adjustment that may be performed by using the servo amplifier with the servo configuration software which operates on a personal computer.

Function	Description	Adjustment		
Machine analyzer	With the machine and servo motor coupled, the characteristic of the mechanical system can be measured by giving a random vibration command from the personal computer to the servo and measuring the machine response.	determine the notch frequency of the machine resonance suppression filter. • You can automatically set the optimum gains in		
Gain search	Executing gain search under to-and-fro positioning command measures settling characteristic while simultaneously changing gains, and automatically searches for gains which make settling time shortest.	You can automatically set gains which make positioning settling time shortest.		
Machine simulation	Response at positioning settling of a machine can be simulated from machine analyzer results on personal computer.	You can optimize gain adjustment and command pattern on personal computer.		

7.2 Auto tuning

7.2.1 Auto tuning mode

The servo amplifier has a real-time auto tuning function which estimates the machine characteristic (load inertia moment ratio) in real time and automatically sets the optimum gains according to that value. This function permits ease of gain adjustment of the servo amplifier.

(1) Auto tuning mode 1

The servo amplifier is factory-set to the auto tuning mode 1.

In this mode, the load inertia moment ratio of a machine is always estimated to set the optimum gains automatically.

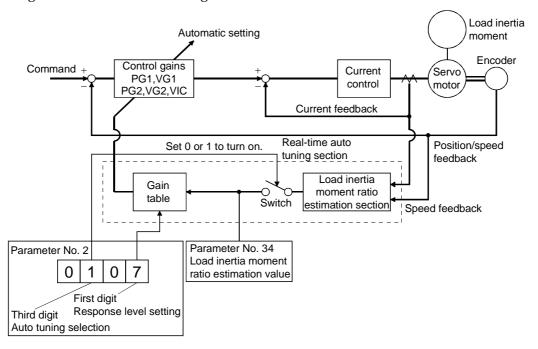
The following parameters are automatically adjusted in the auto tuning mode 1.

Parameter No.	Abbreviation	Name
6	PG1	Position control gain 1
34	GD2	Ratio of load inertia moment to servo motor inertia moment
35	PG2	Position control gain 2
36	VG1	Speed control gain 1
37	VG2	Speed control gain 2
38 VIC		Speed integral compensation

POINT

- The auto tuning mode 1 may not be performed properly if the following conditions are not satisfied.
 - Time to reach 2000r/min is the acceleration/deceleration time constant of 5s or less.
 - Speed is 150r/min or higher.
 - The ratio of load inertia moment to motor inertia moment is not more than 100 times.
 - The acceleration/deceleration torque is 10% or more of the rated torque.
- Under operating conditions which will impose sudden disturbance torque during acceleration/deceleration or on a machine which is extremely loose, auto tuning may not function properly, either. In such cases, use the auto tuning mode 2 or manual mode 1,2 to make gain adjustment.

(2) Auto tuning mode 2


Use the auto tuning mode 2 when proper gain adjustment cannot be made by auto tuning mode 1. Since the load inertia moment ratio is not estimated in this mode, set the value of a correct load inertia moment ratio (parameter No. 34).

The following parameters are automatically adjusted in the auto tuning mode 2.

Parameter No.	Abbreviation	Name
6	PG1	Position control gain 1
35	PG2	Position control gain 2
36	VG1	Speed control gain 1
37	VG2	Speed control gain 2
38	VIC	Speed integral compensation

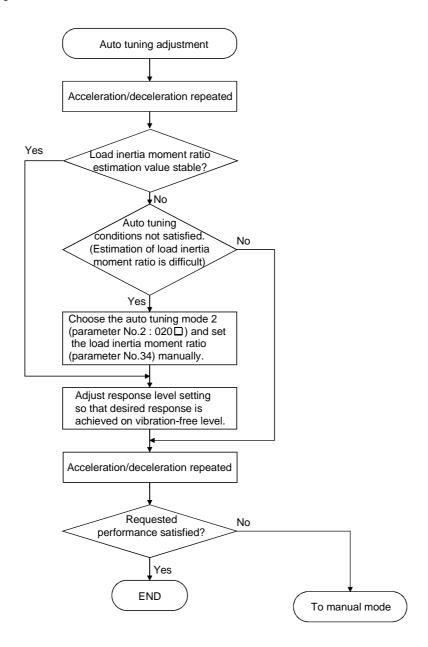
7.2.2 Auto tuning mode operation

The block diagram of real-time auto tuning is shown below.

When a servo motor is accelerated/decelerated, the load inertia moment ratio estimation section always estimates the load inertia moment ratio from the current and speed of the servo motor. The results of estimation are written to parameter No. 34 (load inertia moment ratio). These results can be confirmed on the status display screen of the servo amplifier display section.

If the value of the load inertia moment ratio is already known or if estimation cannot be made properly, chose the "auto tuning mode 2" (parameter No.2: \square 2 \square \square) to stop the estimation of the load inertia moment ratio (Switch in above diagram turned off), and set the load inertia moment ratio (parameter No. 34) manually.

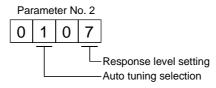
From the preset load inertia moment ratio (parameter No. 34) value and response level (The first digit of parameter No. 2), the optimum control gains are automatically set on the basis of the internal gain tale. The auto tuning results are saved in the EEP-ROM of the servo amplifier every 6 minutes since power-on. At power-on, auto tuning is performed with the value of each control gain saved in the EEP-ROM being used as an initial value.


POINT

• If sudden disturbance torque is imposed during operation, the estimation of the inertia moment ratio may malfunction temporarily. In such a case, choose the "auto tuning mode 2" (parameter No. 2: 020□) and set the correct load inertia moment ratio in parameter No. 34.

7.2.3 Adjustment procedure by auto tuning

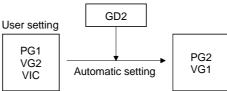
Since auto tuning is made valid before shipment from the factory, simply running the servo motor automatically sets the optimum gains that match the machine. Merely changing the response level setting value as required completes the adjustment. The adjustment procedure is as follows.


(1) Basic procedure

7.2.4 Response level setting in auto tuning mode

Set the response (The first digit of parameter No.2) of the whole servo system. As the response level setting is increased, the trackability and settling time for a command decreases, but a too high response level will generate vibration. Hence, make setting until desired response is obtained within the vibration-free range.

If the response level setting cannot be increased up to the desired response because of machine resonance beyond 100Hz, adaptive vibration suppression control (parameter No. 60) or machine resonance suppression filter (parameter No. 58 • 59) may be used to suppress machine resonance. Suppressing machine resonance may allow the response level setting to increase. Refer to Section 8.1 for adaptive vibration suppression control and machine resonance suppression filter.


		Machi	ine characteristic
Response level setting	Machine rigidity	Machine resonance frequency guideline	Guideline of corresponding machine
1	Low	15Hz	
2		20Hz	
3		25Hz	
4	↑	30Hz	Large conveyor
5		35Hz	
6		45Hz	Arm robot
7		55Hz	
8	Middle	70Hz	General machine tool conveyor
9		85Hz	Precision
A		105Hz	working machine
В		130Hz	
С	\downarrow	160Hz	Inserter Mounter
D	[200Hz	Bonder
E		240Hz	
F	High	300Hz	

7.3 Manual mode 1 (simple manual adjustment)

If you are not satisfied with the adjustment of auto tuning, you can make simple manual adjustment with three parameters.

7.3.1 Operation of manual mode 1

In this mode, setting the three gains of position control gain 1 (PG1), speed control gain 2 (VG2) and speed integral compensation (VIC) automatically sets the other gains to the optimum values according to these gains.

Therefore, you can adjust the model adaptive control system in the same image as the general PI control system (position gain, speed gain, speed integral time constant). Here, the position gain corresponds to PG1, the speed gain to VG2 and the speed integral time constant to VIC. When making gain adjustment in this mode, set the load inertia moment ratio (parameter No. 34) correctly.

7.3.2 Adjustment by manual mode 1

POINT

• If machine resonance occurs, adaptive vibration suppression control (parameter No. 60) or machine resonance suppression filter (parameter No. 58 • 59) may be used to suppress machine resonance. (Refer to Section 8.1.)

(1) For speed control

(a) Parameters

The following parameters are used for gain adjustment:

Parameter No.	Abbreviation	Name
34	GD2	Ratio of load inertia moment to servo motor inertia moment
37	VG2	Speed control gain 2
38	VIC	Speed integral compensation

(b) Adjustment procedure

Step	Operation	Description
1	Set an estimated value to the ratio of load inertia moment to servo motor inertia moment (parameter No. 34).	
2	Increase the speed control gain 2 (parameter No. 37) within the vibration- and unusual noise-free range, and return slightly if vibration takes place.	
3	Decrease the speed integral compensation (parameter No. 38) within the vibration-free range, and return slightly if vibration takes place.	Decrease the time constant of the speed integral compensation.
4	If the gains cannot be increased due to mechanical system resonance or the like and the desired response cannot be achieved, response may be increased by suppressing resonance with adaptive vibration suppression control or machine resonance suppression filter and then executing steps 2 and 3.	Refer to Section 8.2, 8.3.
5	While checking the settling characteristic and rotational status, fine-adjust each gain.	Fine adjustment

(c)Adjustment description

1) Speed control gain 2 (parameter No. 37)

This parameter determines the response level of the speed control loop. Increasing this value enhances response but a too high value will make the mechanical system liable to vibrate. The actual response frequency of the speed loop is as indicated in the following expression:

 $\frac{\text{Speed loop response}}{\text{frequency(Hz)}} = \frac{\text{Speed control gain 2 setting}}{(1 + \text{ratio of load inertia moment to servo motor inertia moment}) \times 2\pi}$

2) Speed integral compensation (VIC: parameter No. 38)

To eliminate stationary deviation against a command, the speed control loop is under proportional integral control. For the speed integral compensation, set the time constant of this integral control. Increasing the setting lowers the response level. However, if the load inertia moment ratio is large or the mechanical system has any vibratory element, the mechanical system is liable to vibrate unless the setting is increased to some degree. The guideline is as indicated in the following expression:

Speed integral compensation		2000 to 3000
setting(ms)	Speed control gain 2 setting/	(1+ratio of load inertia moment to
		servo motor inertia moment setting $\times 0.1$)

(2) For position control

(a) Parameters

The following parameters are used for gain adjustment:

Parameter No.	Abbreviation	Name
6	PG1	Position control gain 1
34	GD2	Ratio of load inertia moment to servo motor inertia moment
37	VG2	Speed control gain 2
38	VIC	Speed integral compensation

(b) Adjustment procedure

Step	Operation	Description
1	Set an estimated value to the ratio of load inertia moment to servo motor inertia moment (parameter No. 34).	
2	Set a slightly smaller value to the position control gain 1 (parameter No. 6).	
3	Increase the speed control gain 2 (parameter No. 37) within the vibration- and unusual noise-free range, and return slightly if vibration takes place.	. 0
4	Decrease the speed integral compensation (parameter No. 38) within the vibration-free range, and return slightly if vibration takes place.	Decrease the time constant of the speed integral compensation.
5	Increase the position control gain 1 (parameter No. 6).	Increase the position control gain.
6	If the gains cannot be increased due to mechanical system resonance or the like and the desired response cannot be achieved, response may be increased by suppressing resonance with adaptive vibration suppression control or machine resonance suppression filter and then executing steps 3 to 5.	Refer to Section 8.1.
7	While checking the settling characteristic and rotational status, fine-adjust each gain.	Fine adjustment

7. GENERAL GAIN ADJUSTMENT

(c) Adjustment description

1) Position control gain 1 (parameter No. 6)

This parameter determines the response level of the position control loop. Increasing position control gain 1 improves trackability to a position command but a too high value will make overshooting liable to occur at the time of settling.

Position control gain 1 guideline $\leq \frac{\text{Speed control gain 2 setting}}{(1+\text{ratio of load inertia moment to servo motor inertia moment})} \times \left(\frac{1}{3} \text{ to } \frac{1}{5}\right)$

2) Speed control gain 2 (VG2: parameter No. 37)

This parameter determines the response level of the speed control loop. Increasing this value enhances response but a too high value will make the mechanical system liable to vibrate. The actual response frequency of the speed loop is as indicated in the following expression:

 $\frac{\text{Speed loop response}}{\text{frequency(Hz)}} = \frac{\text{Speed control gain 2 setting}}{(1 + \text{ratio of load inertia moment to servo motor inertia moment)} \times 2\pi}$

3) Speed integral compensation (parameter No. 38)

To eliminate stationary deviation against a command, the speed control loop is under proportional integral control. For the speed integral compensation, set the time constant of this integral control. Increasing the setting lowers the response level. However, if the load inertia moment ratio is large or the mechanical system has any vibratory element, the mechanical system is liable to vibrate unless the setting is increased to some degree. The guideline is as indicated in the following expression:

Speed integral $\geq \frac{2000 \text{ to } 3000}{\text{Speed control gain 2 setting/ (1+ ratio of load inertia moment to servo motor inertia moment 2 setting <math>\times$ 0.1)

7.4 Interpolation mode

The interpolation mode is used to match the position control gains of the axes when performing the interpolation operation of servo motors of two or more axes for an X-Y table or the like. In this mode, the position control gain 2 and speed control gain 2 which determine command trackability are set manually and the other parameter for gain adjustment are set automatically.

(1) Parameter

(a) Automatically adjusted parameters

The following parameters are automatically adjusted by auto tuning.

Parameter No.	Abbreviation	Name
34	GD2	Ratio of load inertia moment to servo motor inertia moment
35	PG2	Position control gain 2
37	VG2	Speed control gain 2
38	VIC	Speed integral compensation

(b) Manually adjusted parameters

The following parameters are adjustable manually.

Parameter No.	Abbreviation	Name
6	PG1	Position control gain 1
36	VG1	Speed control gain 1

(2) Adjustment procedure

Step	Operation	Description
1	Set 15Hz (parameter No. 2: 010 \square) as the machine resonance frequency of response in the auto tuning mode 1.	Select the auto tuning mode 1.
2	During operation, increase the response level setting (parameter No. 2), and return the setting if vibration occurs.	Adjustment in auto tuning mode 1.
3	Check the values of position control gain 1 (parameter No. 6) and speed control gain 1 (parameter No. 36).	Check the upper setting limits.
4	Set the interpolation mode (parameter No. 2: 000□).	Select the interpolation mode.
5	Using the position control gain 1 value checked in step 3 as the guideline of the upper limit, set in PG1 the value identical to the position loop gain of the axis to be interpolated.	
6	Using the speed control gain 1 value checked in step 3 as the guideline of the upper limit, look at the rotation status and set in speed control gain 1 the value three or more times greater than the position control gain 1 setting.	
7	Looking at the interpolation characteristic and rotation status, fine-adjust the gains and response level setting.	Fine adjustment.

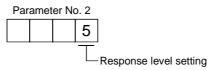
(3) Adjustment description

(a) Position control gain 1 (parameter No.6)

This parameter determines the response level of the position control loop. Increasing position control gain 1 improves trackability to a position command but a too high value will make overshooting liable to occur at the time of settling. The droop pulse value is determined by the following expression.

Droop pulse value (pulse) = $\frac{\text{Rotation speed (r/min)} \times 131,072(\text{pulse})}{\text{Position control gain 1 setting}}$

(b) Speed control gain 1 (parameter No. 36)

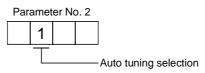

Set the response level of the speed loop of the model. Make setting using the following expression as a guideline.

Speed control gain 1 setting ≥ Position control gain 1 setting ×3

7.5 Differences in auto tuning between MELSERVO-J2 and MELSERVO-J2-Super

7.5.1 Response level setting

To meet higher response demands, the MELSERVO-J2-Super series has been changed in response level setting range from the MELSERVO-J2 series. The following table lists comparison of the response level setting.



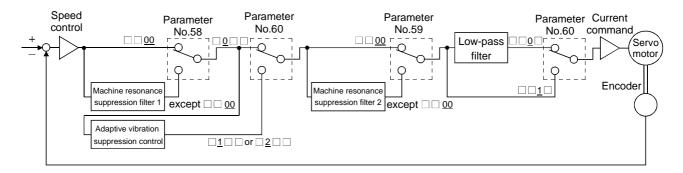
MELSER	RVO-J2 series	MELSERVO-J2-Super series	
Response level setting	Machine resonance frequency	Response level setting	Machine resonance frequency guideline
		1	15Hz
1	20Hz	2	20Hz
		3	25Hz
		4	30Hz
		5	35Hz
2	40Hz	6	45Hz
		7	55Hz
3	60Hz	8	70Hz
4	80Hz	9	85Hz
5	100Hz	A	105Hz
		В	130Hz
		С	160Hz
		D	200Hz
		E	240Hz
		F	300Hz

Note that because of a slight difference in gain adjustment pattern, response may not be the same if the resonance frequency is set to the same value.

7.5.2 Auto tuning selection

The MELSERVO-J2-Super series has an addition of the load inertia moment ratio fixing mode. It also has the addition of the manual mode 1 which permits manual adjustment with three parameters.

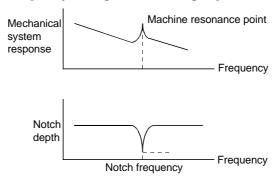
0-1-	Programme	Auto tu	ining selection	Demode
Gain ac	ljustment mode	MELSERVO-J2 series	MELSERVO-J2-Super series	Remarks
Interpolation mode		0	0	Position control gain 1 is fixed.
	Auto tuning mode 1	1	1	Ordinary auto tuning
Auto tuning	Auto tuning mode 2		2	Estimation of load inertia moment ratio stopped. Response level setting valid.
Auto tuning	Manual mode 1		3	Simple manual adjustment
invalid	Manual mode 2	2	4	Manual adjustment of all gains

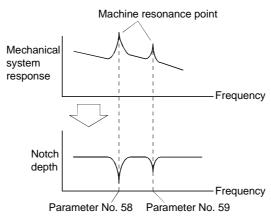

8. SPECIAL ADJUSTMENT FUNCTIONS

POINT

• The functions given in this chapter need not be used generally. Use them if you are not satisfied with the machine status after making adjustment in the methods in Chapter 7.

If a mechanical system has a natural resonance point, increasing the servo system response may cause the mechanical system to produce resonance (vibration or unusual noise) at that resonance frequency. Using the machine resonance suppression filter and adaptive vibration suppression control functions can suppress the resonance of the mechanical system.


8.1 Function block diagram

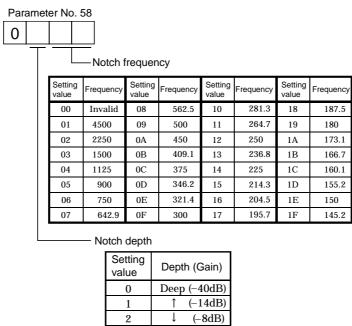

8.2 Machine resonance suppression filter

(1) Function

The machine resonance suppression filter is a filter function (notch filter) which decreases the gain of the specific frequency to suppress the resonance of the mechanical system. You can set the gain decreasing frequency (notch frequency) and gain decreasing depth.

You can use the machine resonance suppression filter 1 (parameter No. 58) and machine resonance suppression filter 2 (parameter No. 59) to suppress the vibration of two resonance frequencies. Note that if adaptive vibration suppression control is made valid, the machine resonance suppression filter 1 (parameter No. 58) is made invalid.

POINT


• The machine resonance suppression filter is a delay factor for the servo system. Hence, vibration may increase if you set a wrong resonance frequency or a too deep notch.

(2) Parameters

(a) Machine resonance suppression filter 1 (parameter No. 58)

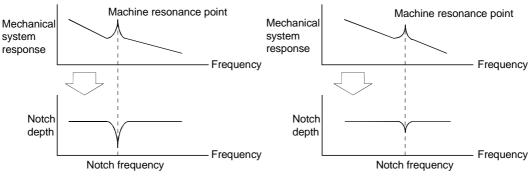
Set the notch frequency and notch depth of the machine resonance suppression filter 1 (parameter No. 58)

When you have made adaptive vibration suppression control selection (parameter No. 60) "valid" or "held", make the machine resonance suppression filter 1 invalid (parameter No. 58: 0000).

Shallow(-4dB)

POINT

- If the frequency of machine resonance is unknown, decrease the notch frequency from higher to lower ones in order. The optimum notch frequency is set at the point where vibration is minimal.
- A deeper notch has a higher effect on machine resonance suppression but increases a phase delay and may increase vibration.
- The machine characteristic can be grasped beforehand by the machine analyzer on the servo configuration software. This allows the required notch frequency and depth to be determined.
- Resonance may occur if parameter No. 58 59 is used to select a close notch frequency and set a deep notch.

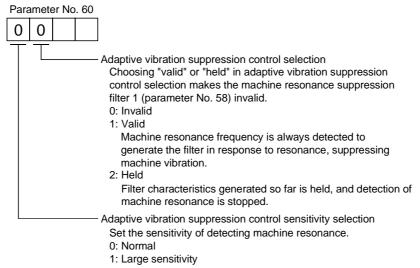

(b) Machine resonance suppression filter 2 (parameter No. 59)

The setting method of machine resonance suppression filter 2 (parameter No. 59) is the same as that of machine resonance suppression filter 1 (parameter No. 58). However, the machine resonance suppression filter 2 can be set independently of whether adaptive vibration suppression control is valid or invalid.

8.3 Adaptive vibration suppression control

(1) Function

Adaptive vibration suppression control is a function in which the servo amplifier detects machine resonance and sets the filter characteristics automatically to suppress mechanical system vibration. Since the filter characteristics (frequency, depth) are set automatically, you need not be conscious of the resonance frequency of a mechanical system. Also, while adaptive vibration suppression control is valid, the servo amplifier always detects machine resonance, and if the resonance frequency changes, it changes the filter characteristics in response to that frequency.


When machine resonance is large and frequency is low When machine resonance is small and frequency is high

POINT

- The machine resonance frequency which adaptive vibration suppression control can respond to is about 150 to 500Hz. Adaptive vibration suppression control has no effect on the resonance frequency outside this range. Use the machine resonance suppression filter for the machine resonance of such frequency.
- Adaptive vibration suppression control may provide no effect on a mechanical system which has complex resonance characteristics or which has too large resonance.
- Under operating conditions in which sudden disturbance torque is imposed during operation, the detection of the resonance frequency may malfunction temporarily, causing machine vibration. In such a case, set adaptive vibration suppression control to be "held" (parameter No. $60: \Box 2 \Box \Box$) to fix the characteristics of the adaptive vibration suppression control filter.

(2) Parameters

The operation of adaptive vibration suppression control selection (parameter No.60).

POINT

- Adaptive vibration suppression control is factory-set to be invalid (parameter No. 60: 0000).
- The filter characteristics generated are saved in the EEP-ROM every 6 minutes since power-on. At next power-on, vibration suppression control is performed with this data saved in the EEP-ROM being used as an initial value.
- Setting the adaptive vibration suppression control sensitivity can change the sensitivity of detecting machine resonance. Setting of "large sensitivity" detects smaller machine resonance and generates a filter to suppress machine vibration. However, since a phase delay will also increase, the response of the servo system may not increase.

8.4 Low-pass filter

(1) Function

When a ballscrew or the like is used, resonance of high frequency may occur as the response of the servo system is increased. To prevent this, the low-pass filter is factory-set to be valid for a torque command. The filter frequency of this low-pass filter is automatically adjusted to the value in the following expression:

 $Filter\ frequency(Hz) = \frac{Speed\ control\ gain\ 2\ setting\times 10}{2\,\pi\times (1 + Ratio\ of\ load\ inertia\ moment\ to\ servo\ motor\ inertia\ moment\ setting\times 0.1)}$

(2) Parameter

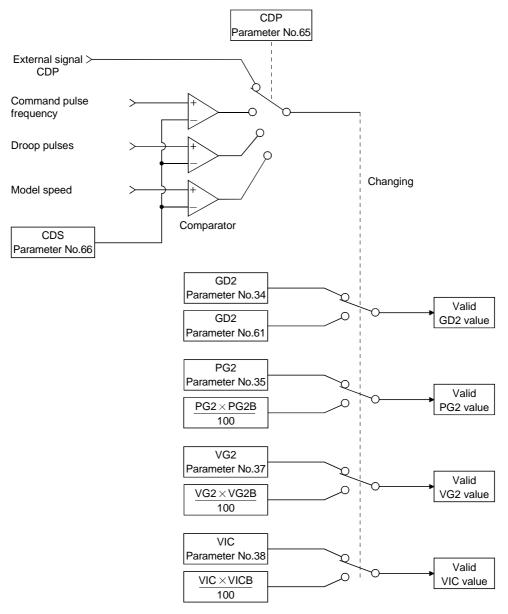
Set the operation of the low-pass filter (parameter No. 60.)

POINT

• In a mechanical system where rigidity is extremely high and resonance is difficult to occur, setting the low-pass filter to be "invalid" may increase the servo system response to shorten the settling time.

8.5 Gain changing function

This function can change the gains. You can change between gains during rotation and gains during stop or can use an external signal to change gains during operation.


8.5.1 Applications

This function is used when:

- (1) You want to increase the gains during servo lock but decrease the gains to reduce noise during rotation.
- (2) You want to increase the gains during settling to shorten the stop settling time.
- (3) You want to change the gains using an external signal to ensure stability of the servo system since the load inertia moment ratio varies greatly during a stop (e.g. a large load is mounted on a carrier).

8.5.2 Function block diagram

The valid control gains PG2, VG2, VIC and GD2 of the actual loop are changed according to the conditions selected by gain changing selection CDP (parameter No. 65) and gain changing condition CDS (parameter No. 66).

8.5.3 Parameters

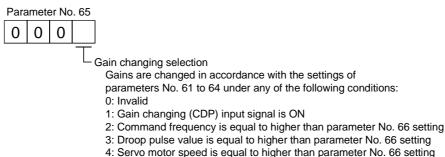
When using the gain changing function, always set " $\Box\Box 4\Box$ " in parameter No.2 (auto tuning) to choose the manual mode of the gain adjustment modes. The gain changing function cannot be used in the auto tuning mode.

Parameter No.	Abbrevi ation	Name	Unit	Description
6	PG1	Position control gain 1	rad/s	Position and speed gains of a model used to set the response
36	VG1	Speed control gain 1	rad/s	level to a command. Always valid.
34	GD2	Ratio of load inertia moment to servo motor inertia moment	0.1 times	Control parameters before changing
35	PG2	Position control gain 2	rad/s	
37	VG2	Speed control gain 2	rad/s	
38	VIC	Speed integral compensation	ms	
61	GD2B	Ratio of load inertia moment to	0.1	Used to set the ratio of load inertia moment to servo motor
01	GDZD	servo motor inertia moment 2	times	inertia moment after changing.
62	PG2B	Position control gain 2 changing ratio	%	Used to set the ratio (%) of the after-changing position control gain 2 to position control gain 2.
63	VG2B	Speed control gain 2 changing ratio	%	Used to set the ratio (%) of the after-changing speed control gain 2 to speed control gain 2.
64	VICB	Speed integral compensation changing ratio	%	Used to set the ratio (%) of the after-changing speed integral compensation to speed integral compensation.
65	CDP	Gain changing selection		Used to select the changing condition.
			kpps	Used to set the changing condition values.
66	CDS	Gain changing condition	pulse	
			r/min	
67	CDT	Gain changing time constant	ms	You can set the filter time constant for a gain change at changing.

(1) Parameters No. 6, 34 to 38

These parameters are the same as in ordinary manual adjustment. Gain changing allows the values of ratio of load inertia moment to servo motor inertia moment, position control gain 2, speed control gain 2 and speed integral compensation to be changed.

- (2) Ratio of load inertia moment to servo motor inertia moment 2 (GD2B: parameter No. 61) Set the ratio of load inertia moment to servo motor inertia moment after changing. If the load inertia moment ratio does not change, set it to the same value as ratio of load inertia moment to servo motor inertia moment (parameter No. 34).
- (3) Position control gain 2 changing ratio (parameter No. 62), speed control gain 2 changing ratio (parameter No. 63), speed integral compensation changing ratio (parameter No. 64)


Set the values of after-changing position control gain 2, speed control gain 2 and speed integral compensation in ratio (%). 100% setting means no gain change.

For example, at the setting of position control gain 2 = 100, speed control gain 2 = 2000, speed integral compensation = 20 and position control gain 2 changing ratio = 180%, speed control gain 2 changing ratio = 150% and speed integral compensation changing ratio = 80%, the after-changing values are as follows:

Position control gain 2 = Position control gain 2 \times Position control gain 2 changing ratio /100=180rad/s Speed control gain 2 = Speed control gain 2 \times Speed control gain 2 changing ratio /100 = 3000rad/s Speed integral compensation = Speed integral compensation \times Speed integral compensation changing ratio /100 = 16ms

(4) Gain changing selection (parameter No. 65)

Used to set the gain changing condition. Choose the changing condition in the first digit. If you set "1" here, you can use the gain changing (CDP) external input signal for gain changing. The gain changing signal (CDP) can be assigned to the pins using parameters No. 43 to 48.

(5) Gain changing condition (parameter No. 66)

When you selected "command frequency", "droop pulses" or "servo motor speed" in gain changing selection (parameter No.65), set the gain changing level.

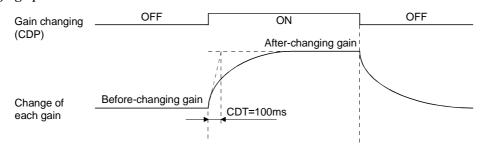
The setting unit is as follows:

Gain changing condition	Unit
Command frequency	kpps
Droop pulses	pulse
Servo motor speed	r/min

(6) Gain changing time constant (parameter No. 67)

You can set the primary delay filter to each gain at gain changing. This parameter is used to suppress shock given to the machine if the gain difference is large at gain changing, for example.

8.5.4 Gain changing operation

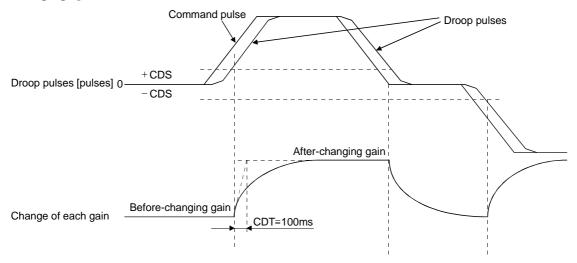

This operation will be described by way of setting examples.

(1) When you choose changing by external input

(a) Setting

Parameter No.	Abbreviation	Name	Setting	Unit
6	PG1	Position control gain 1	100	rad/s
36	VG1	Speed control gain 1	1000	rad/s
34	GD2	Ratio of load inertia moment to servo motor inertia moment	4	0.1 times
35	PG2	Position control gain 2	120	rad/s
37	VG2	Speed control gain 2	3000	rad/s
38	VIC	Speed integral compensation	20	ms
61	GD2B	Ratio of load inertia moment to servo motor inertia moment 2	100	0.1 times
62	PG2B	Position control gain 2 changing ratio	70	%
63	VG2B	Speed control gain 2 changing ratio	133	%
64	VICB	Speed integral compensation changing ratio	250	%
65	CDP	Gain changing selection	0001 (Changed by ON/OFF of pin CN1A-8)	
67	CDT	Gain changing time constant	100	ms

(b) Changing operation


Position control gain 1			100		
Speed control gain 1			1000		
Ratio of load inertia moment to servo motor inertia moment	4.0	\rightarrow	10.0	\rightarrow	4.0
Position control gain 2	120	\rightarrow	84	\rightarrow	120
Speed control gain 2	3000	\rightarrow	4000	\rightarrow	3000
Speed integral compensation	20	\rightarrow	50	\rightarrow	20

(2) When you choose changing by droop pulses

(a) Setting

Parameter No.	Abbreviation	Name	Setting	Unit
6	PG1	Position control gain 1	100	rad/s
36	VG1	Speed control gain 1	1000	rad/s
34	GD2	Ratio of load inertia moment to servo motor inertia moment	40	0.1 times
35	PG2	Position control gain 2	120	rad/s
37	VG2	Speed control gain 2	3000	rad/s
38	VIC	Speed integral compensation	20	ms
61	GD2B	Ratio of load inertia moment to servo motor inertia moment 2	100	0.1 times
62	PG2B	Position control gain 2 changing ratio	70	%
63	VG2B	Speed control gain 2 changing ratio	133	%
64	VICB	Speed integral compensation changing ratio	250	%
65	CDP	Gain changing selection	0003 (Changed by droop pulses)	
66	CDS	Gain changing condition	50	pulse
67	CDT	Gain changing time constant	100	ms

(b) Changing operation

Position control gain 1		100					
Speed control gain 1		1000					
Ratio of load inertia moment to servo motor inertia moment	4.0	\rightarrow	10.0	\rightarrow	4.0	\rightarrow	10.0
Position control gain 2	120	\rightarrow	84	\rightarrow	120	\rightarrow	84
Speed control gain 2	3000	\rightarrow	4000	\rightarrow	3000	\rightarrow	4000
Speed integral compensation	20	\rightarrow	50	\rightarrow	20	\rightarrow	50

9. INSPECTION

- Before starting maintenance and/or inspection, make sure that the charge lamp is off more than 10 minutes after power-off. Then, confirm that the voltage is safe in the tester or the like. Otherwise, you may get an electric shock.
- Any person who is involved in inspection should be fully competent to do the work.
 Otherwise, you may get an electric shock. For repair and parts replacement, contact your safes representative.

POINT

- Do not test the servo amplifier with a megger (measure insulation resistance), or it may become faulty.
- Do not disassemble and/or repair the equipment on customer side.

(1) Inspection

It is recommended to make the following checks periodically:

- (a) Check for loose terminal block screws. Retighten any loose screws.
- (b) Check the cables and the like for scratches and cracks. Perform periodic inspection according to operating conditions.

(2) Life

The following parts must be changed periodically as listed below. If any part is found faulty, it must be changed immediately even when it has not yet reached the end of its life, which depends on the operating method and environmental conditions. For parts replacement, please contact your sales representative.

Part name		Life guideline	
	Smoothing capacitor	10 years	
	Relay	Number of power-on and number of	
Servo amplifier	ricity	emergency stop times : 100,000 times	
	Cooling fan	10,000 to 30,000hours (2 to 3 years)	
	Absolute position battery	Refer to Section 15.2	

(a) Smoothing capacitor

Affected by ripple currents, etc. and deteriorates in characteristic. The life of the capacitor greatly depends on ambient temperature and operating conditions. The capacitor will reach the end of its life in 10 years of continuous operation in normal air-conditioned environment.

(b) Relays

Their contacts will wear due to switching currents and contact faults occur. Relays reach the end of their life when the cumulative number of power-on and emergency stop times is 100,000, which depends on the power supply capacity.

(c) Servo amplifier cooling fan

The cooling fan bearings reach the end of their life in 10,000 to 30,000 hours. Normally, therefore, the fan must be changed in a few years of continuous operation as a guideline.

It must also be changed if unusual noise or vibration is found during inspection.

MEMO		
_		

10. TROUBLESHOOTING

10.1 Trouble at start-up

CAUTION

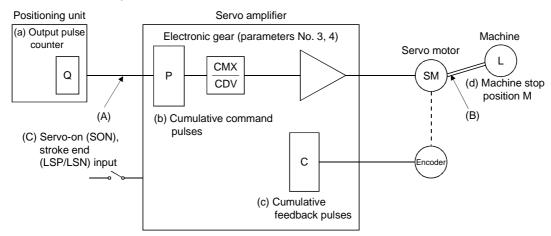
• Excessive adjustment or change of parameter setting must not be made as it will make operation instable.

POINT

• Using the optional servo configuration software, you can refer to unrotated servo motor reasons, etc.

The following faults may occur at start-up. If any of such faults occurs, take the corresponding action.

10.1.1 Position control mode


(1) Troubleshooting

No.	Start-up sequence	Fault	Investigation	Possible cause	Refer to
1	Power on	LED is not lit.LED flickers.	Not improved if connectors CN1A, CN1B, CN2 and CN3 are disconnected.	Power supply voltage fault Servo amplifier is faulty.	
			Improved when connectors CN1A and CN1B are disconnected.	Power supply of CNP1 cabling is shorted.	
			Improved when connector CN2 is disconnected.	Power supply of encoder cabling is shorted. Encoder is faulty.	
			Improved when connector CN3 is disconnected.	Power supply of CN3 cabling is shorted.	
		Alarm occurs.	Refer to Section 10.2 and rem	ove cause.	Section 10.2
2	Switch on servo-on	Alarm occurs.	Refer to Section 10.2 and rem	ove cause.	Section 10.2
	signal.	Servo motor shaft is not servo-locked (is free).	 Check the display to see if the servo amplifier is ready to operate. Check the external I/O signal indication to see if the servo-on (SON) signal is ON. 	Servo-on signal is not input. (Wiring mistake) 2. 24VDC power is not supplied to COM.	Section 6.6
3	Enter input command. (Test operation)	Servo motor does not rotate.	Check cumulative command pulses.	 (a) For open collector pulse train input, 24VDC power is not supplied to OPC. (b) LSP/LSN-SG are not connected. 2. No pulses is input. 	Section 6.2
		Servo motor run in reverse direction.		 Mistake in wiring to controller. Mistake in setting of parameter No. 54. 	Chapter 5

10. TROUBLESHOOTING

No.	Start-up sequence	Fault	Investigation	Possible cause	Refer to
4	Gain adjustment	Rotation ripples	Make gain adjustment in the	Gain adjustment fault	Chapter 7
		(speed fluctuations)	following procedure:		
		are large at low	1. Increase the auto tuning		
		speed.	response level.		
			2. Repeat acceleration and		
			deceleration several times		
			to complete auto tuning.		
		Large load inertia	If the servo motor may be	Gain adjustment fault	Chapter 7
		moment causes the	run with safety, repeat		
		servo motor shaft to	acceleration and		
		oscillate side to side.	deceleration several times to		
			complete auto tuning.		
5	Cyclic operation	Position shift occurs	Confirm the cumulative	Pulse counting error, etc.	(2) in this
			command pulses, cumulative	due to noise.	section
			feedback pulses and actual		
			servo motor position.		

(2) How to find the cause of position shift

When a position shift occurs, check (a) output pulse counter, (b) cumulative command pulse display, (c) cumulative feedback pulse display, and (d) machine stop position in the above diagram.

(A), (B) and (C) indicate position shift causes. For example, (A) indicates that noise entered the wiring between positioning unit and servo amplifier, causing pulses to be mis-counted.

In a normal status without position shift, there are the following relationships:

- 1) Q = P (positioning unit's output counter = servo amplifier's cumulative command pulses)
- 2) P· CMX(parameter No.3) CDV(parameter No.4)
 - = C (cumulative command pulses \times electronic gear = cumulative feedback pulses)
- 3) C $\Delta \ell = M$ (cumulative feedback pulses \times travel per pulse = machine position)

Check for a position shift in the following sequence:

1) When $Q \neq P$

Noise entered the pulse train signal wiring between positioning unit and servo amplifier, causing pulses to be miss-counted. (Cause A)

Make the following check or take the following measures:

- Check how the shielding is done.
- Change the open collector system to the differential line driver system.
- Run wiring away from the power circuit.
- Install a data line filter. (Refer to (2)(a) Section 13.2.6.)

2) When P
$$\cdot \frac{\text{CMX}}{\text{CDV}} \neq \text{C}$$

During operation, the servo-on signal (SON) or forward/reverse rotation stroke end signal was switched off or the clear signal (CR) and the reset signal (RES) switched on. (Cause C) $\frac{1}{2}$

If a malfunction may occur due to much noise, increase the input filter setting (parameter No. 1).

3) When C $\Delta \ell \neq M$

Mechanical slip occurred between the servo motor and machine. (Cause B)

10.1.2 Speed control mode

No.	Start-up sequence	Fault	Investigation	Possible cause	Refer to
1	Power on	• LED is not lit. • LED flickers.	Not improved if connectors CN1A, CN1B, CN2 and CN3 are disconnected.	Power supply voltage fault Servo amplifier is faulty.	
			Improved when connectors CN1A and CN1B are disconnected.	Power supply of CN1 cabling is shorted.	
			Improved when connector CN2 is disconnected.	Power supply of encoder cabling is shorted. Encoder is faulty.	
			Improved when connector CN3 is disconnected.	Power supply of CN3 cabling is shorted.	
		Alarm occurs.	Refer to Section 10.2 and rem	ove cause.	Section 10.2
2	Switch on servo-on	Alarm occurs.	Refer to Section 10.2 and rem	ove cause.	Section 10.2
	signal.	Servo motor shaft is not servo-locked (is free).	Check the display to see if the servo amplifier is ready to operate. Check the external I/O signal indication to see if the servo-on (SON) signal is ON.	(Wiring mistake) 2. 24VDC power is not supplied to COM.	Section 6.6
3	Switch on forward rotation start (ST1) or reverse rotation start (ST2).	Servo motor does not rotate.	Call the status display and check the input voltage of the analog speed command (VC).	Analog speed command is 0V.	Section 6.2
			Call the external I/O signal display and check the ON/OFF status of the input signal.	LSP, LSN, ST1 or ST2 is off.	Section 6.6
			Check the internal speed commands 1 to 7 (parameters No. 8 to 10 • 72 to 75).	Set value is 0.	(1), Section 5.1.2
			Check the internal torque	Torque limit level is too low as	
			limit 1 (parameter No. 28).	compared to the load torque.	
			When the analog torque	Torque limit level is too low as	
			limit (TLA) is usable, check	compared to the load torque.	
			the input voltage on the status display.		
4	Gain adjustment	Rotation ripples (speed fluctuations) are large at low speed.	Make gain adjustment in the following procedure: 1. Increase the auto tuning response level. 2. Repeat acceleration and deceleration several times to complete auto tuning.	Gain adjustment fault	Chapter 7
		Large load inertia moment causes the servo motor shaft to oscillate side to side.	If the servo motor may be run with safety, repeat acceleration and deceleration several times to complete auto tuning.	Gain adjustment fault	Chapter 7

10.1.3 Torque control mode

No.	Start-up sequence	Fault	Investigation	Possible cause	Refer to
1	Power on	LED is not lit.LED flickers.	Not improved if connectors CN1A, CN1B, CN2 and CN3 are disconnected.	 Power supply voltage fault Servo amplifier is faulty. 	
			Improved when connectors CN1A and CN1B are disconnected.	Power supply of CN1 cabling is shorted.	
			Improved when connector CN2 is disconnected.	 Power supply of encoder cabling is shorted. Encoder is faulty. 	
			Improved when connector CN3 is disconnected.	Power supply of CN3 cabling is shorted.	
		Alarm occurs.	Refer to Section 10.2 and rem	ove cause.	Section 10.2
2	Switch on servo-on	Alarm occurs.	Refer to Section 10.2 and rem	ove cause.	Section 10.2
	signal.	Servo motor shaft is free.	Call the external I/O signal display and check the ON/OFF status of the input signal.	Servo-on signal is not input. (Wiring mistake) 2. 24VDC power is not supplied to COM.	Section 6.6
3	Switch on forward rotation start (RS1) or reverse rotation	Servo motor does not rotate.	Call the status display and check the analog torque command (TC).	Analog torque command is 0V.	Section 6.2
	start (RS2).		Call the external I/O signal display and check the ON/OFF status of the input signal.	RS1 or RS2 is off.	Section 6.6
			Check the internal speed limits 1 to 7 (parameters No. 8 to 10 • 72 to 75).	Set value is 0.	(1), Section 5.1.2
			Check the analog torque command maximum output (parameter No. 26) value. Check the internal torque limit 1 (parameter No. 28).	Torque command level is too low as compared to the load torque. Set value is 0.	

10.2 When alarm or warning has occurred

POINT

• Configure up a circuit which will detect the trouble (ALM) signal and turn off the servo-on (SON) signal at occurrence of an alarm.

10.2.1 Alarms and warning list

When a fault occurs during operation, the corresponding alarm or warning is displayed. If any alarm or warning has occurred, refer to Section 10.2.2 or 10.2.3 and take the appropriate action.

Set " \square \square " in parameter No. 49 to output the alarm code in ON/OFF status across the corresponding pin and SG. Warnings (AL.92 to AL.EA) have no alarm codes. Any alarm code is output at occurrence of the corresponding alarm. In the normal status, the signals available before alarm code setting (CN1B-19: ZSP, CN1A-18: INP or SA, CN1A-19: RD) are output.

The alarms marked \bigcirc in the alarm deactivation column can be deactivated by the corresponding operations.

\		(No	te 2) Alarm c	ode		Ala	arm deactivat	ion
	Display	CN1B-19 pin	CN1A-18 pin	CN1A-19 pin	Name	Power OFF→ON	Press "SET" on current alarm screen.	Alarm reset (RES) signal
	AL.10	0	1	0	Undervoltage	0	0	0
	AL.12	0	0	0	Memory error 1	0		
	AL.13	0	0	0	Clock error	0		
	AL.15	0	0	0	Memory error 2	0		
	AL.16	1	1	0	Encoder error 1	0		
	AL.17	0	0	0	Board error	0		
	AL.19	0	0	0	Memory error 3	0		
	AL.1A	1	1	0	Motor combination error	0		
	AL.20	1	1	0	Encoder error 2	0		
	AL.24	1	0	0	Main circuit error	0		
	AL.25	1	1	0	Absolute position erase	0		
us	AL.30	0	0	1	Regenerative error	0	0	0
Alarms	AL.31	1	0	1	Overspeed	0	0	0
Al	AL.32	1	0	0	Overcurrent	0	0	0
	AL.33	0	0	1	Overvoltage	0		
	AL.35	1	0	1	Command pulse frequency error	0	0	0
	AL.37	0	0	0	Parameter error	0		
	AL.45	0	1	1	Main circuit device overheat	0	0	0
	AL.46	0	1	1	Servo motor overheat	0	0	0
	AL.50	0	1	1	Overload 1	○ (Note 1)	○ (Note 1)	○ (Note 1)
	AL.51	0	1	1	Overload 2	○ (Note 1)	○ (Note 1)	○ (Note 1)
	AL.52	1	0	1	Error excessive	0	0	0
	AL.8A	0	0	0	Serial communication time-out error	0	0	0
	AL.8E	0	0	0	Serial communication error	0	0	0
	88888	0	0	0	Watchdog	0		
	AL.92				Open battery cable warning			
	AL.96				Home position setting warning			
	AL.9F				Battery warning			
Sg	AL.E0	`			Excessive regenerative warning	Pomoving t	he cause of o	courronco
nin	AL.E1				Overload warning			ccurrence
Warnings	AL.E3				Absolute position counter warning	deactivates the alarm automatically.		
	AL.E5				ABS time-out warning		J ·	
	AL.E6				Servo emergency stop warning	1		
	AL.E9				Main circuit off warning			
	AL.EA				ABS servo-on warning			

Note: 1. Deactivate the alarm about 30 minutes of cooling time after removing the cause of occurrence.

^{2. 0:} Pin-SG off (open)

^{1:} Pin-SG on (short)

10.2.2 Remedies for alarms

- When any alarm has occurred, eliminate its cause, ensure safety, then reset the alarm, and restart operation. Otherwise, injury may occur.
- If an absolute position erase alarm (AL.25) occurred, always make home position setting again. Otherwise, misoperation may occur.

POINT

- When any of the following alarms has occurred, always remove its cause and allow about 30 minutes for cooling before resuming operation. If operation is resumed by switching control circuit power off, then on to reset the alarm, the servo amplifier and servo motor may become faulty.
 - Regenerative error (AL.30)
 - Overload 1 (AL.50)
 - Overload 2 (AL.51)
- The alarm can be deactivated by switching power off, then on press the "SET" button on the current alarm screen or by turning on the reset signal (RES). For details, refer to Section 10.2.1.

When an alarm occurs, the trouble signal (ALM) switches off and the dynamic brake is operated to stop the servomotor. At this time, the display indicates the alarm No.

The servo motor comes to a stop. Remove the cause of the alarm in accordance with this section. The optional servo configuration software may be used to refer to the cause.

Display	Name	Definition	Cause	Action
AL.10	Undervoltage	MR-J2S-□A:160V or less	 Power supply voltage is low. There was an instantaneous control power failure of 60ms or longer. Shortage of power supply capacity caused the power supply voltage to drop at start, etc. Power was restored after the bus voltage had dropped to 200VDC. (Main circuit power switched on within 5s after it had switched off.) 	Review the power supply.
			5. Faulty parts in the servo amplifier Checking method Alarm (AL.10) occurs if power is switched on after CN1A, CN1B and CN3 connectors are disconnected.	Change the servo amplifier.
AL.12	Memory error 1	RAM, memory fault	Faulty parts in the servo amplifier	Change the servo amplifier.
AL.13 AL.15	Clock error Memory error 2	Printed board fault EEP-ROM fault	Checking method Alarm (any of AL.12,13 and 15) occurs if power is switched on after CN1A, CN1B and CN3 all connectors are disconnected.	
AL.16	Encoder error 1	Communication error occurred between encoder and servo amplifier.	CN2 connector disconnected. Encoder fault Encoder cable faulty (Wire breakage or shorted)	Connect correctly. Change the servo motor. Repair or change cable.

Display	Name	Definition	Cause	Action
AL.17	Board error 2	CPU/parts fault	Faulty parts in the servo amplifier	Change the servo amplifier.
AL.19	Memory error 3	ROM memory fault	Checking method Alarm (AL.17 or AL.19) occurs if power is switched on after CN1A, CN1B and CN3 connectors are disconnected.	
AL.1A	Motor combination error	Wrong combination of servo anplifier and servo motor.	Wrong combination of servo amplifier and servo motor connected.	Use correct combination.
AL.20	Encoder error 2	Communication error occurred between encoder	Encoder connector (CN2) disconnected.	Connect correctly.
AL.24	Main circuit	and servo amplifier. Ground fault	Encoder cable faulty (Wire breakage or shorted) Power input wires and servo motor	Repair or change the cable. Connect correctly.
AL.24	error	occurred at the servo motor outputs	output wires are in contact at main circuit terminal block (TE1). 2. Sheathes of servo motor power	Change the cable.
		of the servo amplififer.	cables deteriorated, resulting in ground fault.	change the cable.
			3. Main circuit of servo amplifier failed.	Change the servo amplifier.
			Checking method AL.24 occurs if the servo is	
			switched on after disconnecting the U, V, W power cables from the servo amplifier.	
AL.25	Absolute position erase	Absolute position data in error	Reduced voltage of super capacitor in encoder	After leaving the alarm occurring for a few minutes, switch power off, then on again. Always make home position setting again.
			Battery voltage low Battery cable or battery is faulty.	Change battery. Always make home position setting again.
		Power was switched on for the first time in the absolute position detection system.	Super capacitor of the absolute position encoder is not charged	After leaving the alarm occurring for a few minutes, switch power off, then on again. Always make home position setting again.
AL.30	Regenerative	Permissible	1. Wrong setting of parameter No. 0	Set correctly.
	alarm	regenerative power of the built-in regenerative brake	Built-in regenerative brake resistor or regenerative brake option is not connected.	Connect correctly
		resistor or regenerative brake option is exceeded.	3. High-duty operation or continuous regenerative operation caused the permissible regenerative power of the regenerative brake option to be exceeded.	 Reduce the frequency of positioning. Use the regenerative brake option of larger capacity. Reduce the load.
			Checking method Call the status display and check the regenerative load ratio.	
			4. Power supply voltage is abnormal. MR-J2S-□A:260V or more MR-J2S-□A1:135V or more	Review power supply
			5. Built-in regenerative brake resistor or regenerative brake option faulty.	Change servo amplifier or regenerative brake option.
		Regenerative transistor fault	6. Regenerative transistor faulty. Checking method	Change the servo amplifier.
			The regenerative brake option has overheated abnormally. The alarm occurs even after removal of the built-in	
			regenerative brake resistor or regenerative brake option.	

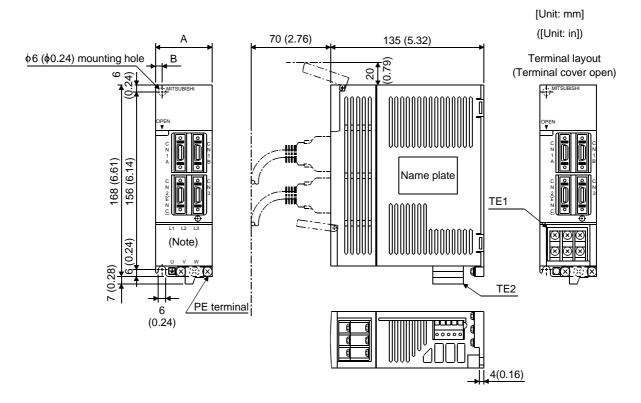
Display	Name	Definition	Cause	Action
AL.31	Overspeed	Speed has exceeded the instantaneous permissible speed.	Input command pulse frequency exceeded the permissible instantaneous speed frequency.	Set command pulses correctly.
			Small acceleration/deceleration time constant caused overshoot to be large.	Increase acceleration/deceleration time constant.
			Servo system is instable to cause overshoot.	 Re-set servo gain to proper value. If servo gain cannot be set to proper value: Reduce load inertia moment ratio; or Reexamine acceleration/ deceleration time constant.
			4. Electronic gear ratio is large (parameters No. 3, 4)	Set correctly.
			5. Encoder faulty.	Change the servo motor.
AL.32	Overcurrent	Current that flew is higher than the	Short occurred in servo amplifier output phases U, V and W.	Correct the wiring.
		permissible current of the servo amplifier.	2. Transistor (IPM) of the servo amplifier faulty. Checking method Alarm (AL.32) occurs if power is switched on after U,V and W are disconnected.	Change the servo amplifier.
			3. Ground fault occurred in servo amplifier output phases U, V and W.	Correct the wiring.
			External noise caused the overcurrent detection circuit to misoperate.	Take noise suppression measures.
AL.33	Overvoltage	Converter bus voltage exceeded 400V.	Lead of built-in regenerative brake resistor or regenerative brake option is open or disconnected.	Change lead. Connect correctly.
			2. Regenerative transistor faulty.	Change servo amplifier
			3. Wire breakage of built-in regenerative brake resistor or regenerative brake option	 For wire breakage of built-in regenerative brake resistor, change servo amplifier. For wire breakage of regenerative brake option, change regenerative brake option.
			4. Capacity of built-in regenerative brake resistor or regenerative	Add regenerative brake option or increase capacity.
			brake option is insufficient.	

Display	Name	Definition	Cause	Action
AL.35	Command	Input pulse frequency of the	Pulse frequency of the command pulse is too high.	Change the command pulse frequency to a proper value.
	error		2. Noise entered command pulses.	Take action against noise.
	CITOI	^	3. Command device failure	Change the command device.
AL.37	Parameter	Ü	Servo amplifier fault caused the	Change the servo amplifier.
AL.UI	error	wrong.	parameter setting to be rewritten.	
			Regenerative brake option not used with servo amplifier was selected in parameter No.0.	Set parameter No.0 correctly.
AL.45	Main circuit	Main circuit device	1. Servo amplifier faulty.	Change the servo amplifier.
	device overheat	overheat	2. The power supply was turned on and off continuously by overloaded status.	The drive method is reviewed.
			3. Air cooling fan of servo amplifier stops.	Exchange the cooling fan or the servo amplifier.
				2. Reduce ambient temperature.
AL.46	Servo motor	Servo motor	1. Ambient temperature of servo	Review environment so that ambient
	overheat	temperature rise	motor is over 40°C.	temperature is 0 to 40°C.
		actuated the	2. Servo motor is overloaded.	1. Reduce load.
		thermal protector.		2. Review operation pattern.
				3. Use servo motor that provides larger output.
			3. Thermal protector in encoder is faulty.	Change servo motor.
AL.50	Overload 1	Load exceeded	1. Servo amplifier is used in excess	1. Reduce load.
		overload protection	of its continuous output current.	2. Review operation pattern.
		characteristic of servo amplifier.		3. Use servo motor that provides larger output.
		Load ratio 300%:	2. Servo system is instable and	1. Repeat acceleration/
		2.5s or more	hunting.	deceleration to execute auto tuning.
		Load ratio 200%:		2. Change auto tuning response setting.
		100s or more		3. Set auto tuning to OFF and make gain
				adjustment manually.
			3. Machine struck something.	1. Review operation pattern.
				2. Install limit switches.
			4. Wrong connection of servo motor.	Connect correctly.
			Servo amplifier's output terminals	
			U, V, W do not match servo motor's input terminals U, V, W.	
			*	Change the same motor
			5. Encoder faulty. Checking method	Change the servo motor.
			When the servo motor shaft is	
			rotated slowly with the servo off,	
			the cumulative feedback pulses	
			should vary in proportion to the	
			rotary angle. If the indication	
			skips or returns midway, the encoder is faulty.	

Display	Name	Definition	Cause	Action
AL.51	Overload 2		1. Machine struck something.	1. Review operation pattern.
		the like caused max.	S	2. Install limit switches.
		output current to	2. Wrong connection of servo motor.	Connect correctly.
		flow successively for	Servo amplifier's output terminals	·
		several seconds.	U, V, W do not match servo	
		Servo motor locked:	motor's input terminals U, V, W.	
		1s or more	3. Servo system is instable and	1. Repeat acceleration/deceleration to
			hunting.	execute auto tuning.
				2. Change auto tuning response setting.
				3. Set auto tuning to OFF and make gain
				adjustment manually.
			4. Encoder faulty.	Change the servo motor.
			Checking method When the servo motor shaft is	
			rotated slowly with the servo off,	
			the cumulative feedback pulses	
			should vary in proportion to the	
			rotary angle. If the indication	
			skips or returns midway, the	
			encoder is faulty.	
AL.52	Error excessive	The droop pulse	1. Acceleration/deceleration time	Increase the acceleration/deceleration
		value of the	constant is too small.	time constant.
		deviation counter	2. Torque limit value (parameter	Increase the torque limit value.
		exceeded the	No.28) is too small.	
		encoder resolution	3. Motor cannot be started due to	1. Review the power supply capacity.
		imes10 [pulse].	torque shortage caused by power	2. Use servo motor which provides larger
			supply voltage drop.	output.
			4. Position control gain 1 (parameter	Increase set value and adjust to ensure
			No.6) value is small.	proper operation.
			5. Servo motor shaft was rotated by	1. When torque is limited, increase the
			external force.	limit value.
				2. Reduce load.
				3. Use servo motor that provides larger output.
			6. Machine struck something.	1. Review operation pattern.
			o. Wachine struck something.	2. Install limit switches.
			7. Encoder faulty	Change the servo motor.
			8. Wrong connection of servo motor.	Connect correctly.
			Servo amplifier's output terminals	connect correctly.
			U, V, W do not match servo	
			motor's input terminals U, V, W.	
AL.8A	Serial	RS-232C or RS-422	1. Communication cable breakage.	Repair or change communication cable
	communication	communication	2. Communication cycle longer than	Set correct value in parameter.
	time-out error	stopped for longer	parameter No. 56 setting.	
			3. Wrong protocol.	Correct protocol.
		parameter No.56.		
AL.8E	Serial	Serial	1. Communication cable fault	Repair or change the cable.
	communication	communication error occurred	(Open cable or short circuit)	
	error		2. Communication device (e.g.	Change the communication device (e.g.
		amplifier and	personal computer) faulty	personal computer).
		communication		
		device (e.g. personal computer).		

Display	Name	Definition	Cause	Action
88888	Watchdog	CPU, parts faulty	Fault of parts in servo amplifier Checking method Alarm (88888) occurs if power is switched on after CN1A, CN1B and CN3 connectors are disconnected.	Change servo amplifier.

10.2.3 Remedies for warnings


If AL.E6 or AL.EA occurs, the servo off status is established. If any other warning occurs, operation can be continued but an alarm may take place or proper operation may not be performed. Use the optional servo configuration software to refer to the cause of warning.

Display	Name	Definition	Cause	Action
AL.92	Open battery	Absolute position	1. Battery cable is open.	Repair cable or changed.
	cable warning	detection system battery voltage is low.	2. Battery voltage dropped to 2.8V or less.	Change battery.
AL.96	Home position setting warning	Home position setting could not be made.	 Droop pulses remaining are greater than the in-position range setting. Command pulse entered after clearing of droop pulses. Creep speed high. 	Remove the cause of droop pulse occurrence Do not enter command pulse after clearing of droop pulses. Reduce creep speed.
AL.9F	Battery warning	Voltage of battery for absolute position detection system reduced.	Battery voltage fell to 3.2V or less.	Change the battery.
AL.E0	Excessive regenerative warning	There is a possibility that regenerative power may exceed permissible regenerative power of built-in regenerative brake resistor or regenerative brake option.	Regenerative power increased to 85% or more of permissible regenerative power of built-in regenerative brake resistor or regenerative brake option. Checking method Call the status display and check regenerative load ratio.	 Reduce frequency of positioning. Change regenerative brake option for the one with larger capacity. Reduce load.
AL.E1	Overload warning	There is a possibility that overload alarm 1 or 2 may occur.	Load increased to 85% or more of overload alarm 1 or 2 occurrence level. — Cause, checking method Refer to AL.50,51.	Refer to AL.50, AL.51.
AL.E3		Absolute position encoder pulses faulty.	1. Noise entered the encoder.	Take noise suppression measures.
			2. Encoder faulty.	Change servo motor.
AL.E5	ABS time-out		1. PC lader program wrong.	Contact the program.
	warning		2. ST2 • TLC signal mis-wiring	Connect properly.
AL.E6	Servo emergency stop warning	EMG-SG are open.	External emergency stop was made valid. (EMG-SG opened.)	Ensure safety and deactivate emergency stop.
AL.E9	Main circuit off warning	Servo was switched on with main circuit power off.		Switch on main circuit power.
AL.EA	ABS servo-on warning	Servo-on signal (SON) turned on more than 1s after servo amplifier had entered absolute position data transfer mode.	PC ladder program wrong. SON signal mis-wiring.	Correct the program. Connect properly.

11. OUTLINE DIMENSION DRAWINGS

11.1 Servo amplifiers

(1) MR-J2S-10A to MR-J2S-60A MR-J2S-10A1 to MR-J2S-40A1

Comus openiifion	Variable dimensions		Weight	
Servo amplifier	Α	В	[kg]([lb])	
MR-J2S-10A(1)	50 (1.07)	0 (0 04)	0.7 (1.54)	
MR-J2S-20A(1)	50 (1.97)	6 (0.24)		
MR-J2S-40A(1)	70 (0 70)	00 (0.07)	1 1 (0 40)	
MR-J2S-60A	70 (2.76)	22 (0.87)	1.1 (2.43)	

Note: This data applies to the 3-phase 200 to 230VAC and 1-phase 230VAC power supply models.

TE1

• For 3-phase 200 to 230VAC and 1-phase 230VAC

L ₁	L ₂	L ₃
U	V	W

Terminal screw: M4

Tightening torque: 1.24 [N·m] (175.6 [oz·in])

• For 1-phase 100 to 120VAC

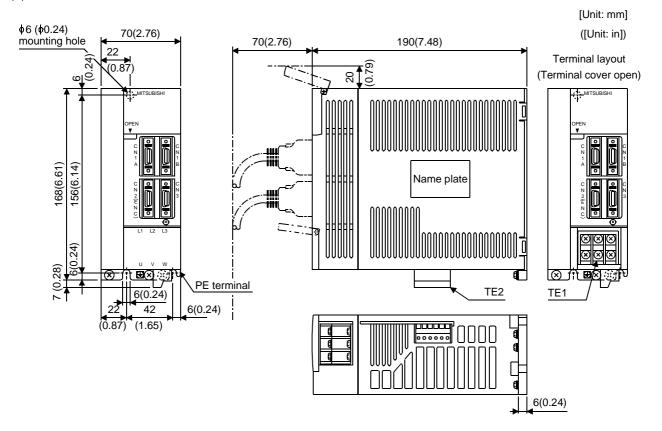
Terminal screw: M4

Tightening torque: 1.24 [N·m] (175.6 [oz·in])

TE2

←Front

D C P L21 L11


Tightening torque: 0.5 to 0.6 [N⋅m] (70.8 to 85.0 [oz⋅in]) FRONT MSTB2,5/5-ST-5,08 (Phoenix Contact make)

PE terminals

Terminal screw: M4

Tightening torque: 1.24 [N·m] (175.6 [oz·in])

(2) MR-J2S-70A • MR-J2S-100A

Come omplifier	Weight
Servo amplifier	[kg]([lb])
MR-J2S-70A	1.7
MR-J2S-100A	(3.75)

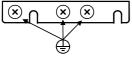
TE1

L ₁	L2	Lз
C	V	W

Terminal screw: M4

Tightening torque: 1.24 [N·m] (175.6 [oz·in])

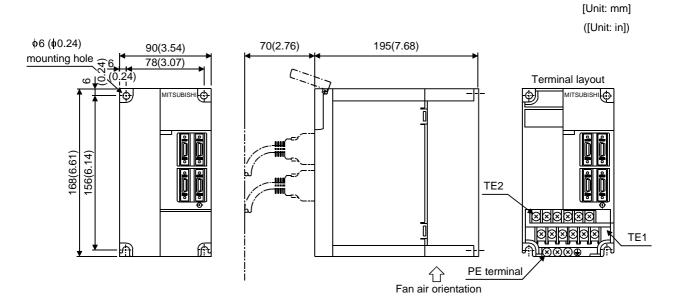
← Front


D C P L21 L11 N

FRONT MSTB2,5/6-ST-5,08

(Phoenix Contact make)

Tightening torque: 0.5 to 0.6 [N·m] (70.8 to 85.0 [oz·in])

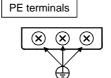

PE terminals

Terminal screw: M4

Tightening torque: 1.24 [N·m] (175.6 [oz·in])

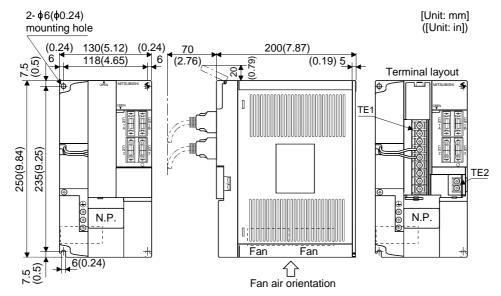
(3) MR-J2S-200A • MR-J2S-350A

Servo amplifier	Weight [kg]([lb])
MR-J2S-200A	2.0
MR-J2S-350A	(4.41)


Terminal screw: M4

Tightening torque: 1.24 [N·m] (175.6 [oz·in])

Terminal screw: M4


Tightening torque: 1.24 [N·m] (175.6 [oz·in])

Terminal screw: M4

Tightening torque: 1.24 [N·m] (175.6 [oz·in])

(4) MR-J2S-500A

Servo amplifier	Weight [kg]([lb])	
MR-J2S-500A	4.9(10.8)	

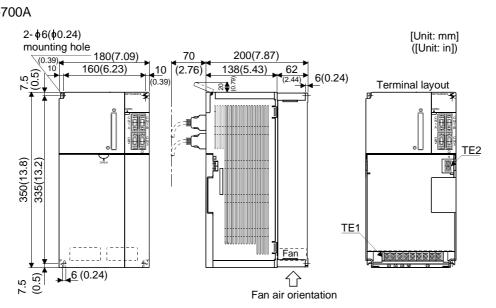
TE1 Terminal screw: M4 Tightening torque: 1.2 [N·m](169.9[oz·in]) L_2 Lз С Ρ Ν U ٧

PE terminals Built-in regenerative brake resistor lead terminal fixing screw -⊗

Terminal screw: M4

 \otimes

Tightening torque: 1.2 [N·m](169.9[oz·in])


TE2

W

Terminal screw : M3.5 L_{11}

Tightening torque: 1.0 [N·m](141.6[oz·in]) L_{21}

(5) MR-J2S-700A

Servo amplifier	Weight [kg]([lb])
MR-J2S-700A	7.2(15.9)

TE1

L₁ L₂ L₃ C P N U V W

Terminal screw: M4

Tightening torque : 1.2 [N·m](169.9[oz·in])

PE terminals

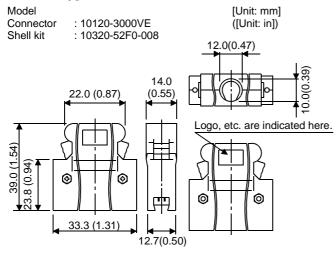
| Second Second

Terminal screw: M4

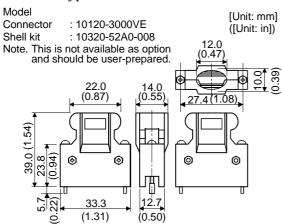
Tightening torque : 1.2 [N \cdot m](169.9[oz \cdot in])

TE2

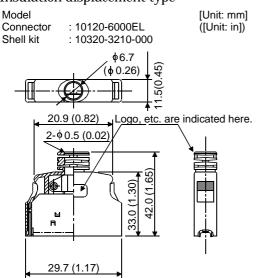
L₁₁ Terminal screw : M3.5

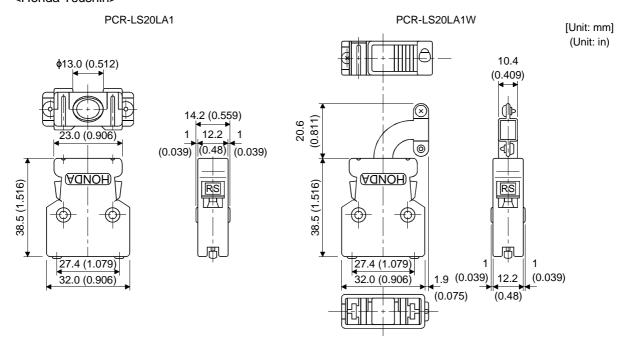

Tightening torque : 1.0 [N · m](141.6[oz · in])

11.2 Connectors


(1) Servo amplifier side

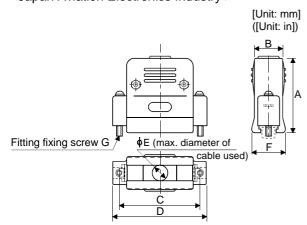
<3M >


(a) Soldered type


(b) Threaded type

(c) Insulation displacement type

(2) Bus cable connector <Honda Tsushin>


No contract Disco	Model			
Number of Pins	Connector Case			
90	PCR-S20FS (soldering type)	PCR-LS20LA1		
20	PCR-S20F (insulation displacement type)	PCR-LS20LA1W		

Crimping terminal: FHAT-002A

Note: PCR-S20F and PCR-LS20LA1W are not options and are to be supplied by the customer.

(3) Communication cable connector

<Japan Aviation Electronics Industry >

Туре	A ±1	B ±1	C ±0.25	D ±1	φE	F Reference	G
DE-C1-J6-S6	34.5(1.36)	19(0.75)	24.99(0.98)	33(1.30)	6(0.24)	18(0.71)	#4-40

12. CHARACTERISTICS

12.1 Overload protection characteristics

An electronic thermal relay is built in the servo amplifier to protect the servo motor and servo amplifier from overloads. The operation characteristics of the electronic thermal relay are shown below. Overload 1 alarm (AL.50) occurs if overload operation performed is above the electronic thermal relay protection curve shown below. Overload 2 alarm (AL.51) occurs if the maximum current flew continuously for several seconds due to machine collision, etc. Use the equipment on the left-hand side area of the continuous or broken line in the graph.

In a machine like the one for vertical lift application where unbalanced torque will be produced, it is recommended to use the machine so that the unbalanced torque is 70% or less of the rated torque.

(1) MR-J2S-10A to MR-J2S-100A

HC-KFS series HC-MFS series HC-SFS series HC-UFS series

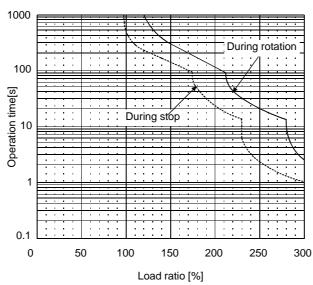


Fig 12.1 Electronic thermal relay protection characteristics 1

(2) MR-J2S-200A to MR-J2S-350A

HC-SFS series HC-RFS series HC-UFS series

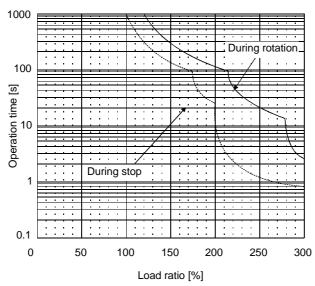


Fig 12.2 Electronic thermal relay protection characteristics 2

(3) MR-J2S-500A • MR-J2S-700A

HC-SFS series HC-RFS series HC-UFS series

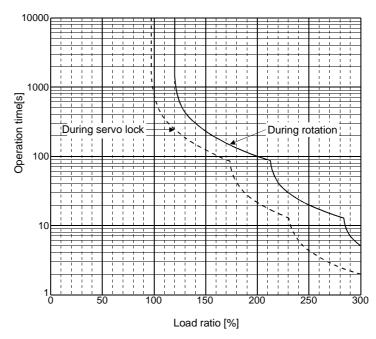


Fig 12.3 Electronic thermal relay protection characteristics 3

12.2 Power supply equipment capacity and generated loss

(1) Amount of heat generated by the servo amplifier

Table 12.1 indicates servo amplifiers' power supply capacities and losses generated under rated load. For thermal design of an enclosure, use the values in Table 12.1 in consideration for the worst operating conditions. The actual amount of generated heat will be intermediate between values at rated torque and zero torque according to the duty used during operation. When the servo motor is run at less than the maximum speed, the power supply capacity will be smaller than the value in the table, but the servo amplifier's generated heat will not change.

Table 12.1 Power supply capacity and generated heat per servo amplifier at rated output

		(Note 1)	(Not	te 2)		
Servo amplifier	Servo motor	Power supply	Servo amplifier-generated heat[W]		Area required for heat dissipation	
· ·		capacity[kVA]	At rated torque	With servo off	[m²]	[ft²]
	HC-KFS053 · 13	0.3	25	15	0.5	5.4
MR-J2S-10A(1)	HC-MFS053 • 13	0.3	25	15	0.5	5.4
	HC-UFS13	0.3	25	15	0.5	5.4
	HC-KFS23	0.5	25	15	0.5	5.4
MR-J2S-20A(1)	HC-MFS23	0.5	25	15	0.5	5.4
	HC-UFS23	0.5	25	15	0.5	5.4
	HC-KFS43	0.9	35	15	0.7	7.5
MR-J2S-40A(1)	HC-MFS43	0.9	35	15	0.7	7.5
	HC-UFS43	0.9	35	15	0.7	7.5
MD IOC OOA	HC-SFS52	1.0	40	15	0.8	8.6
MR-J2S-60A	HC-SFS53	1.0	40	15	0.8	8.6
	HC-KFS73	1.3	50	15	1.0	10.8
MR-J2S-70A	HC-MFS73	1.3	50	15	1.0	10.8
	HC-UFS72 • 73	1.3	50	15	1.0	10.8
1 F 100 100 1	HC-SFS81	1.5	50	15	1.0	10.8
MR-J2S-100A	HC-SFS102 · 103	1.7	50	15	1.0	10.8
	HC-SFS121	2.1	90	20	1.8	19.4
	HC-SFS201	3.5	90	20	1.8	19.4
	HC-SFS152 • 153	2.5	90	20	1.8	19.4
MR-J2S-200A	HC-SFS202 • 203	3.5	90	20	1.8	19.4
	HC-RFS103	1.7	50	15	1.0	10.8
	HC-RFS153	2.5	90	20	1.8	19.4
	HC-UFS152	2.5	90	20	1.8	19.4
	HC-SFS301	4.8	120	20	2.7	29.1
MD IOC OFOA	HC-SFS352 • 353	5.5	130	20	2.7	29.1
MR-J2S-350A	HC-RFS203	3.5	90	20	1.8	19.4
	HC-UFS202	3.5	90	20	1.8	19.4
MR-J2S-500A	HC-SFS502	7.5	195	25	3.9	42.0
	HC-RFS353	5.5	135	25	2.7	29.1
	HC-RFS503	7.5	195	25	3.9	42.0
	HC-UFS352	5.5	195	25	3.9	42.0
	HC-UFS502	7.5	195	25	3.9	42.0
MR-J2S-700A	HC-SFS702	10.0	300	25	6.0	64.6

Note:1. Note that the power supply capacity will vary according to the power supply impedance.

^{2.} Heat generated during regeneration is not included in the servo amplifier-generated heat. To calculate heat generated by the regenerative brake option, use Equation 13.1 in Section 13.1.1.

(2) Heat dissipation area for enclosed servo amplifier

The enclosed control box (hereafter called the control box) which will contain the servo amplifier should be designed to ensure that its temperature rise is within $+10^{\circ}$ C at the ambient temperature of 40°C. (With a 5°C (41°F) safety margin, the system should operate within a maximum 55°C (131°F) limit.) The necessary enclosure heat dissipation area can be calculated by Equation 12.1:

$$A = \frac{P}{K \cdot \Delta T} \tag{12.1}$$

where, A : Heat dissipation area [m2]

P : Loss generated in the control box [W]

ΔT : Difference between internal and ambient temperatures [°C]

K : Heat dissipation coefficient [5 to 6]

When calculating the heat dissipation area with Equation 12.1, assume that P is the sum of all losses generated in the enclosure. Refer to Table 12.1 for heat generated by the servo amplifier. "A" indicates the effective area for heat dissipation, but if the enclosure is directly installed on an insulated wall, that extra amount must be added to the enclosure's surface area.

The required heat dissipation area will vary wit the conditions in the enclosure. If convection in the enclosure is poor and heat builds up, effective heat dissipation will not be possible. Therefore, arrangement of the equipment in the enclosure and the use of a fan should be considered.

Table 12.1 lists the enclosure dissipation area for each servo amplifier when the servo amplifier is operated at the ambient temperature of 40° C (104° F) under rated load.

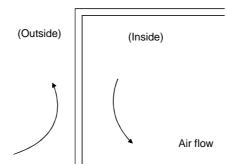


Fig. 12.4 Temperature distribution in enclosure

When air flows along the outer wall of the enclosure, effective heat exchange will be possible, because the temperature slope inside and outside the enclosure will be steeper.

12.3 Dynamic brake characteristics

Fig. 12.4 shows the pattern in which the servo motor comes to a stop when the dynamic brake is operated. Use Equation 12.2 to calculate an approximate coasting distance to a stop. The dynamic brake time constant τ varies with the servo motor and machine operation speeds. (Refer to Fig. 12.5)

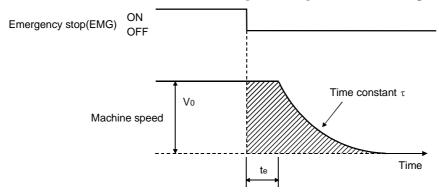


Fig. 12.5 Dynamic brake operation diagram

Lmax	$= \frac{V_0}{60} \cdot \left\{ te + \tau \left[1 + \frac{J_L}{J_M} \right] \right\}. \tag{12.2}$
Lmax	: Maximum coasting distance[mm][in]
Vo	: Machine rapid feedrate [mm/min][in/min]
Jм	: Servo motor inertial moment
$J_{\rm L}$: Load inertia moment converted into equivalent value on servo motor shaft [kg • cm²][oz • in²]
τ	: Brake time constant (Fig. 12.5)[s]
te	: Delay time of control section (Fig. 12.4)[s]
	(There is internal relay delay time of about 30ms.)

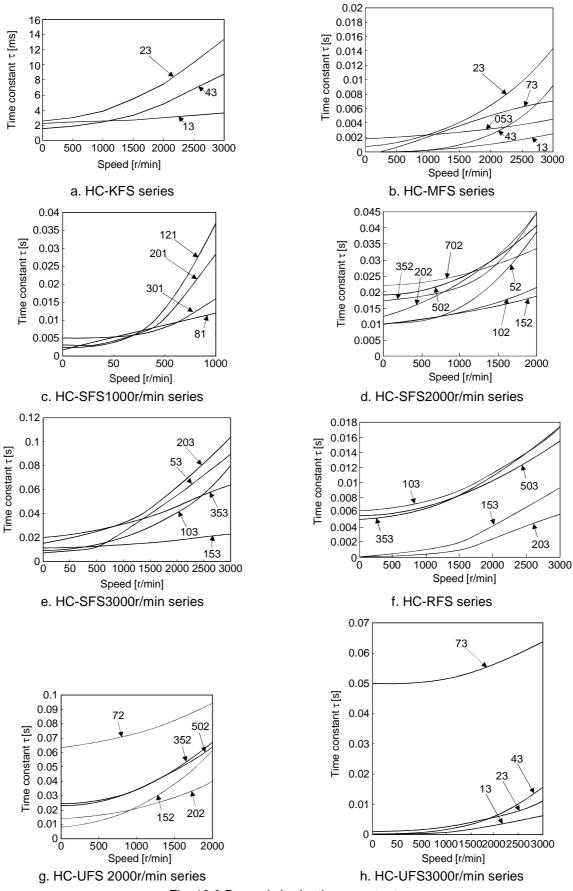



Fig. 12.6 Dynamic brake time constant

Use the dynamic brake at the load inertia moment indicated in the following table. If the load inertia moment is higher than this value, the built-in dynamic brake may burn. If there is a possibility that the load inertia moment may exceed the value, contact Mitsubishi.

Servo amplifier	Load inertia moment ratio [times]		
MR-J2S-10A to MR-J2S-200A MR-J2S-10A1 to MR-J2S-40A1	30		
MR-J2S-350A	16		
MR-J2S-500A • MR-J2S-700A	15		

12.4 Encoder cable flexing life

The flexing life of the cables is shown below. This graph calculated values. Since they are not guaranteed values, provide a little allowance for these values.

MEMO	

13. OPTIONS AND AUXILIARY EQUIPMENT

<u>^!\</u>	WΑ	RN	INC
∠ i \	v v 🗥	1/1/	III

• Before connecting any option or auxiliary equipment, make sure that the charge lamp is off more than 10 minutes after power-off, then confirm the voltage with a tester or the like. Otherwise, you may get an electric shock.

!CAUTION

• Use the specified auxiliary equipment and options. Unspecified ones may lead to a fault or fire.

13.1 Options

13.1.1 Regenerative brake options

!CAUTION

• The specified combinations of regenerative brake options and servo amplifiers may only be used. Otherwise, a fire may occur.

(1) Combination and regenerative power

			(Note)	Regenerative	e power[W]			
Servo amplifier	Built-in regenerative	MR-RB032	MR-RB12	MR-RB32	MR-RB30	MR-RB50	MR-RB31	MR-RB51
	brake resistor	[40Ω]	[40Ω]	[40Ω]	[13Ω]	[13 Ω]	[6.7Ω]	$[6.7\Omega]$
MR-J2S-10A(1)		30						
MR-J2S-20A(1)	10	30	100					
MR-J2S-40A(1)	10	30	100					
MR-J2S-60A	10	30	100					
MR-J2S-70A	20	30	100	300				
MR-J2S-100A	20	30	100	300				
MR-J2S-200A	100				300	500		
MR-J2S-350A	100				300	500		
MR-J2S-500A	130				300	500		
MR-J2S-700A	170						300	500

Note: This value is the regenerative power of the resistor and is not the rated power.

(2) Selection of the regenerative brake option

(a) Simple selection method

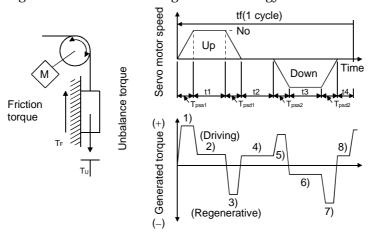
In horizontal motion applications, select the regenerative brake option as described below: When the servo motor is run without load in the regenerative mode from the running speed to a stop, the permissible duty is as indicated in Section 5.1 of the separately available Servo Motor Instruction Manual.

For the servo motor with a load, the permissible duty changes according to the inertia moment of the load and can be calculated by the following formula:

 $\frac{\text{Permissible}}{\text{duty}} = \frac{\text{Permissible duty for servo motor with no load (value indication Section 5.1 in Servo Motor Instruction Manual)}{(m+1)}$

$$\times \left(\frac{\text{ratedspeed}}{\text{running speed}}\right)^{2} [\text{times/min}]$$

where m = load inertia moment/servo motor inertia moment


From the permissible duty, find whether the regenerative brake option is required or not. Permissible duty < number of positioning times [times/min]
Select the regenerative brake option out of the combinations in (1) in this section.

(b) To make selection according to regenerative energy

Use the following method when regeneration occurs continuously in vertical motion applications or when it is desired to make an in-depth selection of the regenerative brake option:

a. Regenerative energy calculation

Use the following table to calculate the regenerative energy.

Formulas for calculating torque and energy in operation

Regenerative power	Torque applied to serv	o motor [N · m]	Energy [J]
1)	$T_1 = \frac{(J_L + J_M) \cdot N_0}{9.55 \times 10^4} \cdot \frac{1}{T_{psa}}$	+ T _U + T _F	$E_1 = \frac{0.1047}{2} \cdot N_0 \cdot T_1 \cdot T_{psa1}$
2)	$T_2 = T_U + T_F$		$E_2 = 0.1047 \cdot N_0 \cdot T_2 \cdot t_1$
3)	$T_3 = \frac{(J_L + J_M) \cdot N_0}{9.55 \times 10^4} \cdot \frac{1}{T_{psd1}} +$	Tu + TF	$E_3 = \frac{0.1047}{2} \cdot N_0 \cdot T_3 \cdot T_{psd1}$
4), 8)	$T_4 = T_U$		E₄≥0 (No regeneration)
5)	$T_5 = \frac{(J_L + J_M) \cdot N_0}{9.55 \times 10^4} \cdot \frac{1}{T_{psa}}$	— Tu + TF	$E_5 = \frac{0.1047}{2} \cdot N_0 \cdot T_5 \cdot T_{psa2}$
6)	$T_6 = T_U + T_F$		$E_6 = 0.1047 \cdot N_0 \cdot T_6 \cdot t_3$
7)	$T_7 = \frac{(J_{L} + J_{M}) \cdot N_0}{9.55 \times 10^4} \cdot \frac{1}{T_{psd}}$	— Tu + TF	$E_7 = \frac{0.1047}{2} \cdot N_0 \cdot T_7 \cdot T_{psd2}$
Sum total of reg	enerative energies	Sum total of r	negative energies in 1) to 8)

b. Losses of servo motor and servo amplifier in regenerative mode

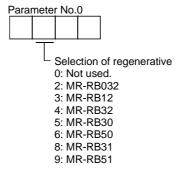
The following table lists the efficiencies and other data of the servo motor and servo amplifier in the regenerative mode.

Servo amplifier	Inverse efficiency[%]	Capacitor charging[J]
MR-J2S-10A(1)	55	9
MR-J2S-20A(1)	70	9
MR-J2S-40A(1)	85	11
MR-J2S-60A	85	11
MR-J2S-70A	80	18
MR-J2S-100A	80	18
MR-J2S-200A	85	40
MR-J2S-350A	85	40
MR-J2S-500A	90	45
MR-J2S-700A	90	70

Inverse efficiency (η)

:Efficiency including some efficiencies of the servo motor and servo amplifier when rated (regenerative) torque is generated at rated speed. Since the efficiency varies with the speed and generated torque, allow for about 10%.

Capacitor charging (Ec) : Energy charged into the electrolytic capacitor in the servo amplifier.

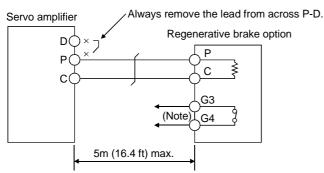

Subtract the capacitor charging from the result of multiplying the sum total of regenerative energies by the inverse efficiency to calculate the energy consumed by the regenerative brake option.

$$ER[J] = \eta \cdot Es - Ec$$

Calculate the power consumption of the regenerative brake option on the basis of single-cycle operation period tf [s] to select the necessary regenerative brake option.

(3) Connection of the regenerative brake option

Set parameter No.2 according to the open to be used.

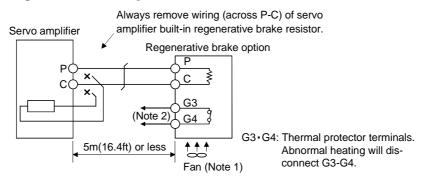


(4) Connection of the regenerative brake option

The regenerative brake option will generate heat of about 100° C. Fully examine heat dissipation, installation position, used cables, etc. before installing the option. For wiring, use flame-resistant cables and keep them clear of the regenerative brake option body. Always use twisted cables of max. 5m(16.4ft) length for connection with the servo amplifier.

(a) MR-J2S-350A or less

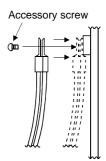
Always remove the wiring from across P-D and fit the regenerative brake option across P-C.



G3 • G4: Thermal protector terminals.
Abnormal heating will disconnect G3-G4.

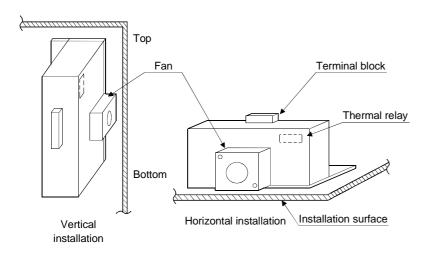
Note: Make up a sequence which will switch off the magnetic contactor (MC) when abnormal heating occurs.

(b) MR-J2S-500A • MR-J2S-700A


Always remove the wiring (across P-C) of the servo amplifier built-in regenerative brake resistor and fit the regenerative brake option across P-C.



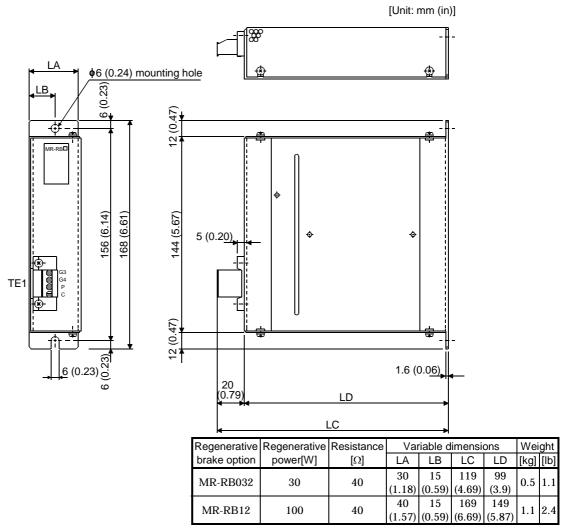
Note 1. When using the MR-RB51, forcibly cool it with a cooling fan (1.0m³/min, □92 or so).

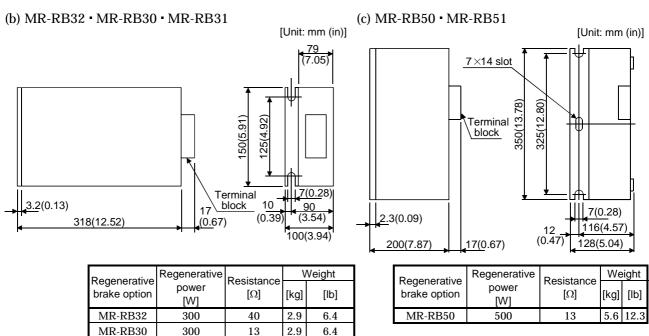

Make up a sequence which will switch off the magnetic contactor (MC) when abnormal heating occurs. When using the regenerative brake resistor option, remove the servo amplifier's built-in regenerative brake resistor terminals (across P-C), fit them back to back, and secure them to the frame with the accessory screw as shown below.

Mounting method

For the MR-RB51 install the cooling fan as shown.

[Unit:mm(in)]
Fan installation screw hole dimensions


2-M3 screw hole
(for fan installation)
Depth 10 or less
(Screw hole already
machined)


2-M3 screw hole
(for fan installation)
Depth 10 or less
(Screw hole already
machined)

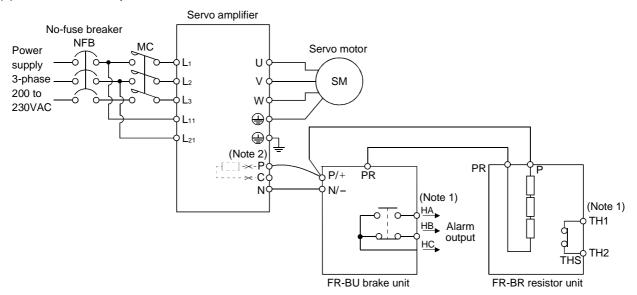
Toyo Denki's TL396A or equivalent

(5) Outline drawing

(a) MR-RB032 • MR-RB12

13.1.2 Brake unit

POINT

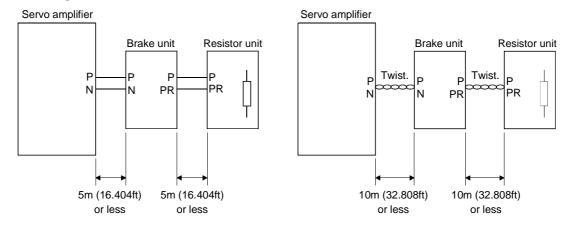

- The brake unit and resistor unit of other than 200V class are not applicable to the servo amplifier.
- The brake unit and resistor unit of the same capacity must be combined. The units of different capacities may result in damage.
- The brake unit and resistor unit must be installed on a vertical surface in the vertical direction. If they are installed in the horizontal direction or on a horizontal surface, a heat dissipation effect reduces.
- The temperature of the resistor unit casing rises to higher than 100°C. Do not cause cables and combustibles to make contact with the casing.

The brake unit is the integration of the regenerative control and resistor and is connected to the bus (across P-N) of the servo amplifier. As compared to the MR-RB regenerative brake option, the brake unit can return larger power. Hence, use the this brake unit when the MR-RB cannot provide sufficient regenerative brake capability.

(1) Selection

Brake unit	Resistor unit	Permissible Continuous Power [kw]	Max. Instantaneous Current [kw]	Applicable Servo Amplifier
FR-BU-15K	FR-BR-15K	0.99	16.5	MR-J2S-500A
FR-BU-30K	FR-BR-30K	1.99	33.4	MR-J2S-700A

(2) Connection example



Note 1. Make up the external sequence to switch the power off when an alarm occurs or when the thermal relay is actuated.

2. Always remove the wiring (across P-C) of the servo amplifier built-in resistor.

The cables between the servo amplifier and brake unit and between the resistor unit and brake unit should be as short as possible. The cables longer than 5m(16.404ft) should be twisted. If twisted, the cables must not be longer than 10m(32.808ft).

The cable size should be equal to or larger than the recommended size. See the brake unit instruction manual. You cannot connect one set of brake unit to two servo amplifiers or two sets of brake units to one servo amplifier.

(3) Outside dimensions

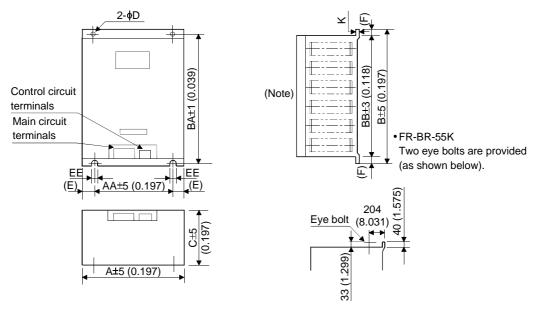
(a) Brake unit (FR-BU)

Control circuit terminals

Main circuit terminals

AAEE C

C


[Unit: mm(in)]

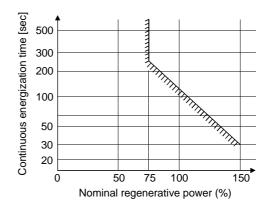
Note: Ventilation ports are provided in both side faces and top face. The bottom face is open.

Brake Unit	А	AA	В	ВА	С	D	E	EE	К	F	Approx. Weight [kg(lb)]
FR-BU-15K	100	60	240	225	128	6	18.5	6	48.5	7.5	2.4
	(3.937)	(2.362)	(9.446)	(10.039)	(5.039)	(0.236)	(0.728)	(0.236)	(1.909)	(0.295)	(5.291)
FR-BU-30K	160	90	240	225	128	6	33.5	6	78.5	7.5	3.2
	(6.299)	(3.543)	(9.446)	(10.039)	(5.039)	(0.236)	(1.319)	(0.236)	(3.091)	(0.295)	(7.055)

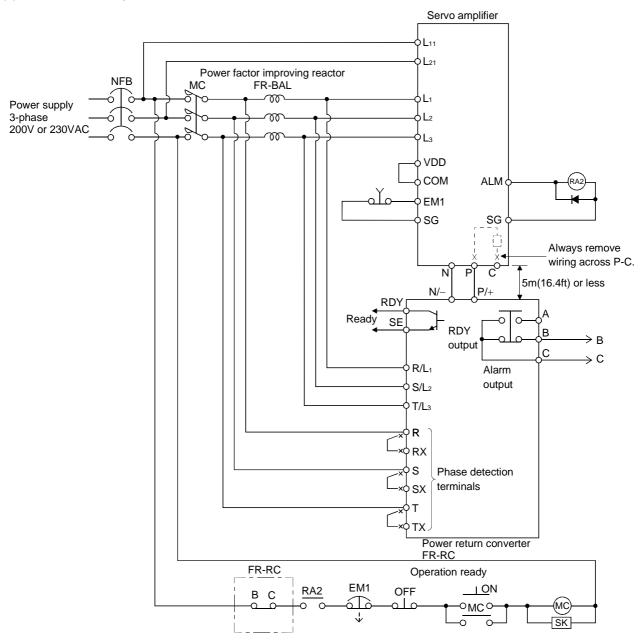
(b) Resistor unit (FR-BR)

[Unit: mm(in)]

Note: Ventilation ports are provided in both side faces and top face. The bottom face is open.

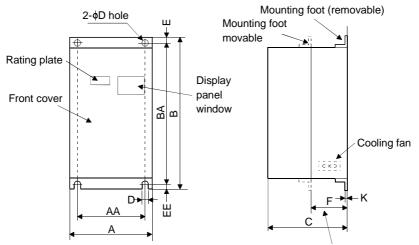

Resistor Unit Model	А	AA	В	ВА	BB	С	D	E	EE	К	F	Approx. Weight [kg(lb)]
FR-BR-	170	100	450	432	410	220	6	35	6	1.6	20	15
15K	(6.693)	(3.937)	(17.717)	(17.008)	(16.142)	(8.661)	(0.236)	(1.378)	(0.236)	(0.063)	(0.787)	(66.139)
FR-BR-	340	270	600	582	560	220	10	35	10	2	20	30
30K	(11.389)	(10.63)	(23.622)	(22.913)	(22.047)	(8.661)	(0.394)	(1.378)	(0.394)	(0.079)	(0.787)	(33.069)

13.1.3 Power return converter


(1) Selection

The converters can continuously return 75% of the nominal regenerative power. They are applied to the servo amplifiers of the MR-J2S-500A and MR-J2S-700A.

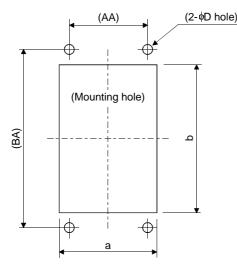
Power return converter	Nominal Regenerative Power (kW)	Servo Amplifier
FR-RC15	15	MR-J2S-500A
FR-RC30	30	MR-J2S-700A



(2) Connection example

(3) Outside dimensions of the power return converters

[Unit: mm(in)]

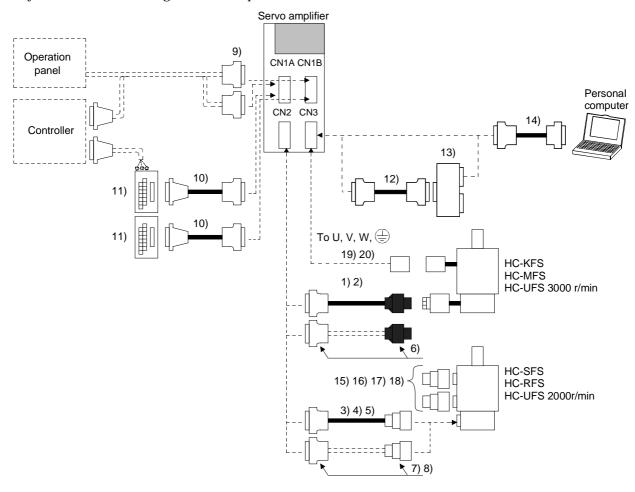


Heat generation area outside mounting dimension

Power return converter	А	AA	В	ВА	С	D	E	EE	К	F	Approx. Weight [kg(lb)]
ED DC 4514	270	200	450	432	195	10	10	8	3.2	87	19
FR-RC-15K	(10.630)	(7.874)	(17.717)	(17.008)	(7.677)	(0.394)	(0.394)	(0.315)	(0.126)	(3.425)	(41.888)
FR-RC-30K	340	270	600	582	195	10	10	8	3.2	90	31
	(13.386)	(10.630)	(23.622)	(22.913)	(7.677)	(0.394)	(0.394)	(0.315)	(0.126)	(3.543)	(68.343)

(4) Mounting hole machining dimensions

When the power return converter is fitted to a totally enclosed type box, mount the heat generating area of the converter outside the box to provide heat generation measures. At this time, the mounting hole having the following dimensions is machined in the box.



				[Unit :	mm(in)]
Model	Α	В	D	AA	BA
FR-RC-15K	260	412	10	200	432
FR-RC-13K	(10.236)	(16.220)	(0.394)	(7.874)	(17.009)
FR-RC-30K	330	562	10	270	582
FR-RC-SUK	(12.992)	(22.126)	(0.394)	(10.630)	(22.913)

13.1.4 Cables and connectors

(1) Cable make-up

The following cables are used for connection with the servo motor and other models. Those indicated by broken lines in the figure are not options.

No.	Product	Model	Desc	ription	Application
1)	Standard encoder	MR-JCCBL□M-L	Connector: 10120-3000VE	Housing : 1-172161-9	Standard
	cable	Refer to (2) in this	Shell kit: 10320-52F0-008	Connector pin: 170359-1	flexing life
		section.	(3M or equivalent)	(AMP or equivalent)	IP20
2)	Long flexing life	MR-JCCBL□M-H		_	Long flexing
	encoder cable	Refer to (2) in this			life
		section.	4.5—		IP20
3)	Standard encoder	MR-JHSCBL□M-L	Connector: 10120-3000VE	Connector: MS3106B20-29S	Standard
	cable	Refer to (2) in this	Shell kit: 10320-52F0-008	Cable clamp: MS3057-12A	flexing life
		section.	(3M or equivalent)	(Japan Aviation Electronics)	IP20
4)	Long flexing life	MR-JHSCBL□M-H	<u> ۲۰۰</u>		Long flexing
	encoder cable	Refer to (2) in this			life
		section.	-L-		
5)	IP65-compliant	MR-ENCBL□M-H	Connector: 10120-3000VE	Connector	Long flexing
	encoder cable	Refer to (2) in this	Shell kit: 10320-52F0-008	: MS3106A20-29S (D190)	life
		section.	(3M or equivalent)	Cable clamp	IP65
				: CE3057-12A-3 (D265)	IP67
				Back shell: CE02-20BS-S	Not oil-
				(DDK)	resistant.
			<u> </u>		
6)	Encoder	MR-J2CNM	Connector: 10120-3000VE	Housing : 1-172161-9	IP20
	connector set		Shell kit: 10320-52F0-008	Pin : 170359-1	
			(3M or equivalent)	Cable clamp: MTI-0002	
				(AMP or equivalent)	
			- ₽~	_	
			الحا		
7)	Encoder	MR-J2CNS	Connector: 10120-3000VE	Connector: MS3106B20-29S	IP20
	connector set		Shell kit: 10320-52F0-008	Cable clamp: MS3057-12A	
			(3M or equivalent)	(Japan Aviation Electronics)	
			- -		
8)	Encoder	MR-ENCNS	Connector: 10120-3000VE	Connector: MS3106A20-29S (D190)	IP65
	connector set			Cable clamp: CE3057-12A-3 (D265)	
				Back shell: CE02-20BS-S	
			-	(DDK)	
			<u> </u>		

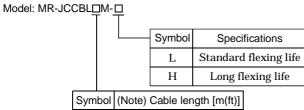
No.	Product	Model		De	scription	Application
	Control signal	MR-J2CN1	Connector: 10120-3	000VE	۲۰-	
9)	connector set		Shell kit: 10320-521	F0-008		
,			(3M or equivalent)		Qty: 2 each	
	Junction	MR-J2TBL□M	Connector: HIF3BA	N-20D-2 54R	Connector: 10120-6000EL	For junction
	terminal block	Refer to	(Hirose Electric)	1 402 410 111	Shell kit: 10320-3210-000	terminal
10)	cable	Section13.1.5.	(,		(3M or equivalent)	block
10)						connection
	T. motion	MR-TB20	Refer to Section 13.	1 5		
11)	Junction terminal block	MIK-1 D2U	Refer to Section 13.	1.3.		
	Bus cable	MR-J2HBUS□M	Connector: 10120-6	OOOEI	Connector: 10120-6000EL	For
	bus cable	Refer to	Shell kit: 10320-32		Shell kit: 10320-3210-000	maintenance
		section13.1.6.	(3M or equivalent)	10-000	(3M or equivalent)	junction
12)		Section 13.1.0.	(Sivi or equivalent)		(Sivi or equivalent)	card
						connection
			ال_ر_ا			connection
13)	Maintenance	MR-J2CN3TM	Refer to Section 13.	1.6.		
13)	junction card					
	Communication	MR-CPCATCBL3M	Connector: 10120-6	000EL	Connector: DE-9SF-N	For
	cable	Refer to (3) in this	Shell kit: 10320-32	10-000	Case: DE-C1-J6-S6	connection
14)		section.	(3M or equivalent)		(Japan Aviation Electronics)	with PC-AT-
11)			Г-		- -Th	compatible
					ل_ا	personal
	_					computer
	Power supply	MR-PWCNS1			CE05-6A22-23SD-B-BSS	
15)	connector set	Refer to the Servo			p:CE3057-12A-2 (D265)	
		Motor Instruction		(DDK)		
		Manual.		~	CDOT OLOU LOCAD D DCC	-
	Power supply	MR-PWCNS2			CE05-6A24-10SD-B-BSS	
16)	connector set	Refer to the Servo			p: CE3057-16A-2 (D265)	FDN I
		Motor Instruction		(DDK)		EN
	D 1	Manual. MR-PWCNS2		DI CEOF	04.04.10GD D DGG	Standard-
	Power supply			_	-6A24-10SD-B-BSS	compliant IP65 IP67
17)	connector set	Refer to the Servo		(DDK)	p: CE3057-16A-2 (D265)	11705 11707
		Motor Instruction		(DDK)		
	Brake connector	Manual. MR-BKCN		Plug- MS21	06A10SL-4S (D190) (DDK)	1
	set	Refer to the Servo		O	ector: YS010-5-8 (Daiwa Dengyo)	
18)	501	Motor Instruction		Capie (Oilli	cetor. 15010-5-6 (Daiwa Deligyo)	
		Manual.				
	Power supply	MR-PWCNK1		Plug: 5559-	04P-210	IP20
	connector set	Refer to the Servo		_	5558PBT3L (For AWG16)(6 pcs.)	
19)	Sommeror Sec	Motor Instruction		(Molex mak	-	
		Manual.	▼	(1.1310A HIGH	,	
	Power supply	MR-PWCNK2	۵	Plug: 5559-	06P-210	For motor
		1		_	-	
20)	connector set			Terminal: 5	5558PBT3L (For AWG16)(8 pcs.)	with brake

(2) Encoder cable

!CAUTION

If you have fabricated the encoder cable, connect it correctly.
 Otherwise, misoperation or explosion may occur.

POINT

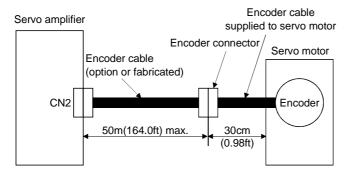

- The encoder cable is not oil resistant.
- Refer to Section 12.4 for the flexing life of the encoder cable.

Generally use the encoder cable available as our options. If the required length is not found in the options, fabricate the cable on the customer side.

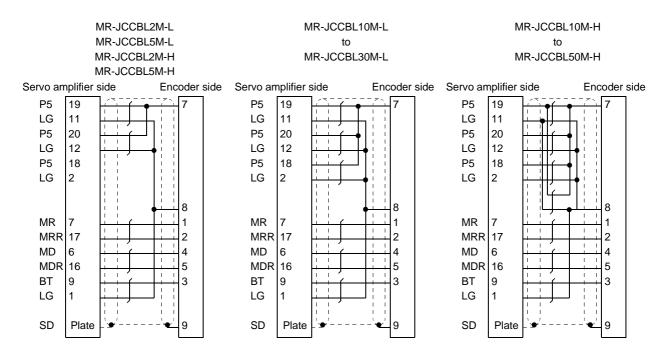
(a) MR-JCCBL□M-L • MR-JCCBL□M-H

These encoder cables are used with the HC-KFS $^{\bullet}$ HC-MFS $^{\bullet}$ HC-UFS3000r/min series servo motors.

1) Model explanation

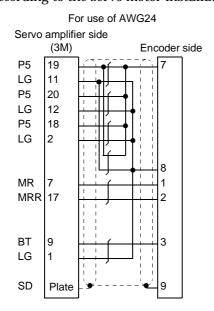


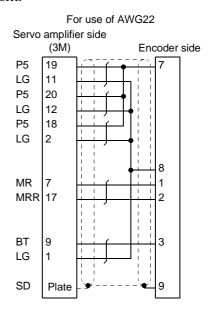
Symbol	(Note) Cable length [m(ft)]
2	2 (6.56)
5	5 (16.4)
10	10 (32.8)
20	20 (65.6)
30	30 (98.4)
40	40 (131.2)
50	50 (164.0)


Note: MR-JCCBL M-H has no 40(131.2) and 50m(164.0ft) sizes.

2) Connection diagram

For the pin assignment on the servo amplifier side, refer to Section 3.3.1.

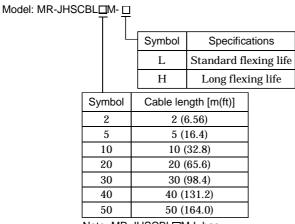

Encoder connector 172161-9 (AMP)									
1	2	3							
MR	MRR	BAT							
4	5	6							
MD	MDR								
7	8	9							
P5	LG	SHD							

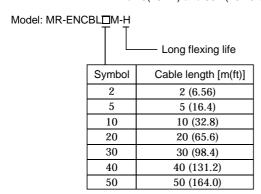


When fabricating an encoder cable, use the recommended wires given in Section 13.2.1 and the MR-J2CNM connector set for encoder cable fabrication, and fabricate an encoder cable as shown in the following wiring diagram. Referring to this wiring diagram, you can fabricate an encoder cable of up to 50m(164.0ft) length including the length of the encoder cable supplied to the servo motor.

When the encoder cable is to be fabricated by the customer, the wiring of MD and MDR is not required.

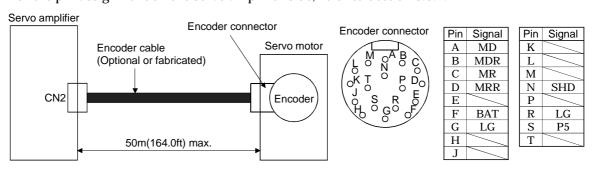
Refer to Chapter 3 of the servo motor instruction guide and choose the encode side connector according to the servo motor installation environment.

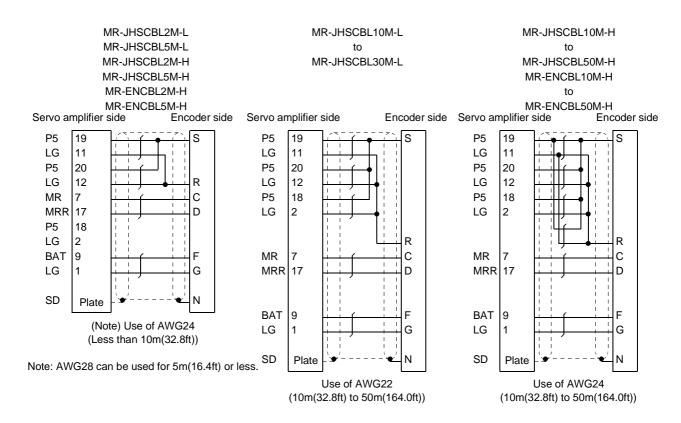



(b) MR-JHSCBL□M-L • MR-JHSCBL□M-H • MR-ENCBL□M-H

These encoder cables are used with the HC-SFS • HC-RFS • HC-UFS2000r/min series servo motors.

1) Model explanation




Note: MR-JHSCBL□M-L has no 40(131.2) and 50m(164.0ft) sizes.

2) Connection diagram

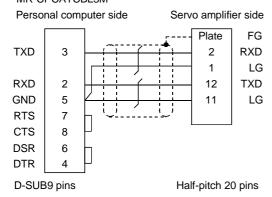
For the pin assignment on the servo amplifier side, refer to Section 3.3.1.

When fabricating an encoder cable, use the recommended wires given in Section 13.2.1 and the MR-J2CNS connector set for encoder cable fabrication, and fabricate an encoder cable in accordance with the optional encoder cable wiring diagram given in this section. You can fabricate an encoder cable of up to 50m(164.0ft) length.

Refer to Chapter 3 of the servo motor instruction guide and choose the encode side connector according to the servo motor installation environment.

(3) Communication cable

POINT


• This cable may not be used with some personal computers. After fully examining the signals of the RS-232C connector, refer to this section and fabricate the cable.

(a) Model definition

Model: MR-CPCATCBL3M Cable length 3[m](10[ft])

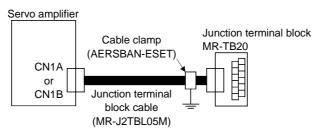
(b) Connection diagram

MR-CPCATCBL3M

When fabricating the cable, refer to the connection diagram in this section.

The following must be observed in fabrication:

- 1) Always use a shielded, multi-core cable and connect the shield with FG securely.
- 2) The optional communication cable is 3m(10ft) long. When the cable is fabricated, its maximum length is 15m(49ft) in offices of good environment with minimal noise.


13.1.5 Junction terminal block (MR-TB20)

POINT

*When using the junction terminal block, you cannot use SG of CN1A-20 and CN1B-20. Use SG of CN1A-4 and CN1B-4.

(1) How to use the junction terminal block

Always use the junction terminal block (MR-TB20) with the junction terminal block cable (MR-J2TBL \square M) as a set. A connection example is shown below:

Ground the junction terminal block cable on the junction terminal block side with the standard accessory cable clamp fitting (AERSBAN-ESET). For the use of the cable clamp fitting, refer to Section 13.2.6, (2)(c).

(2) Terminal labels

Among the terminal block labels for the junction terminal block, use the two for the MR-J2S-A(MR-J2-A). When changing the input signals in parameters No. 43 to 48, refer to (4) in this section and Section 3.3 and apply the accessory signal seals to the labels.

(3) Outline drawing

(Crimping terminal width: 7.2mm (0.283 in) max.)

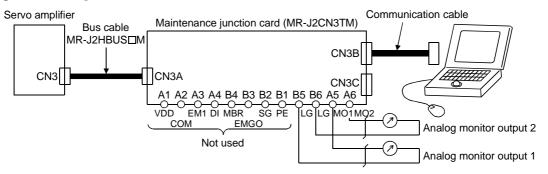
(4) Junction terminal block cable (MR-J2TBL□M)

Model: MR-J2TBL M

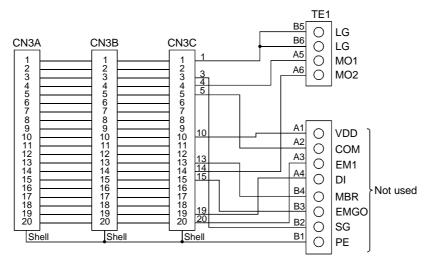
| Symbol | Cable length[m(ft)] | 05 | 0.5 (1.64) | 1 | 1 (3.28)

Junction terminal block side connector (Hirose Electric) HIF3BA-20D-2.54R (connector)

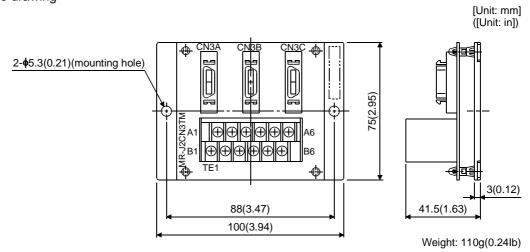
Servo amplifier side (CN1A CN1B) connector (3M) 10120-6000EL (connector) 10320-3210-000 (shell kit)

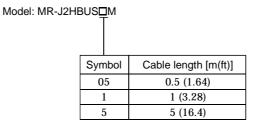

		(Note) S	Symbol			Junction terminal	Pin		Pin
Position co	ntrol mode	Speed co	ntrol mode	Torque co	ntrol mode	block terminal No.	No.		No.
For CN1A	For CN1B			For CN1A		DIOCK LEITHINALING.	NO.		110.
LG	LG	LG	LG	LG	LG	10	B1		1
NP	VC		VC		VLA	0	A1	ſ	2
PP	VDD		VDD		VDD	11	B2	 	3
P15R	DO1	P15R	DO1	P15R	DO1	1	A2	ſ	4
LZ	SON	LZ	SON	LZ	SON	12	В3	 	5
LA	TLC	LA	TLC	LA	VLC	2	A3	ſ	6
LB		LB	SP2	LB	SP2	13	B4		7
CR	PC	SP1	ST1	SP1	RS2	3	A4	ſ	8
COM	TLC	COM	ST2	COM	RS1	14	B5	,	9
SG	SG	SG	SG	SG	SG	4	A5	ſ	10
OPC	P15R		P15R		P15R	15	B6		11
NG	TLA		TLA		TC	5	A6	ſ	12
PG	COM		COM		COM	16	B7	,	13
OP	RES	OP	RES	OP	RES	6	A7	ſ	14
LZR	EMG	LZR	EMG	LZR	EMG	17	B8		15
LAR	LSP	LAR	LSP	LAR		7	A8	ſ	16
LBR	LSN	LBR	LSN	LBR		18	B9		17
INP	ALM	SA	ALM		ALM	8	A9	<u> </u>	18
RD	ZSP	RD	ZSP	RD	ZSP	19	B10	 	19
SD	SD	SD	SD	SD	SD	9	A10		20
									Plate

Note: The labels supplied to the junction terminal block are designed for the position control mode. When using the junction terminal block in the speed or torque control mode, change the signal abbreviations using the accessory signal seals.

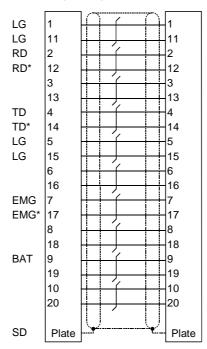

13.1.6 Maintenance junction card (MR-J2CN3TM)

(1) Usage


The maintenance junction card (MR-J2CN3TM) is designed for use when a personal computer and analog monitor outputs are used at the same time.


(2) Connection diagram

(3) Outline drawing



(4) Bus cable (MR-J2HBUS ☐ M)

MR-J2HBUS05M MR-J2HBUS1M MR-J2HBUS5M

10120-6000EL (connector) 10320-3210-000 (shell kit) 10120-6000EL (connector) 10320-3210-000 (shell kit)

13.1.7 Battery (MR-BAT, A6BAT)

Use the battery to build an absolute position detection system.

13.1.8 Servo configurations software

The servo configuration software uses the communication function of the servo amplifier to perform parameter setting changes, graph display, test operation, etc. on a personal computer.

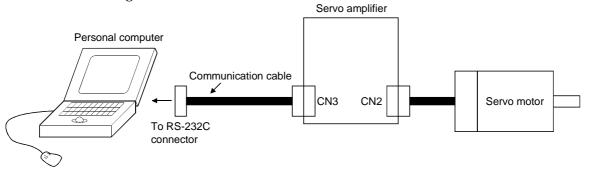
(1) Specifications

Item	Description
Communication signal	Conforms to RS-232C.
Baudrate [bps]	57600, 38400, 19200, 9600
Monitor	Batch display, high-speed display, graph display (Minimum resolution changes with the processing speed of the personal computer.)
Alarm	Alarm display, alarm history, data display at alarm occurrence
Diagnostic	External I/O signal display, no-rotation reason display, cumulative power-on time display, software number display, motor information display, tuning data display, ABS data display, automatic VC offset display, shaft name setting.
Parameters	Data setting, list display, change list display, detailed information display, turning
Test operation	Jog operation, positioning operation, motor-less operation, output signal forced output, program operation in simple language.
Advanced function	Machine analyzer, gain search, machine simulation.
File operation	Data read, save, print
Others	Automatic operation, station setting, help display

(2) System configuration

(a) Components

To use this software, the following components are required in addition to the servo amplifier and servo motor:


Model	(Note 1) Description					
(Note 2)	IBM PC-AT compatible on which Windows 95 or 98 (English) runs					
Personal	(Pentium133MHz or higher recommended). Memory: 16MB or more, hard disk free space: 20MB or mor					
computer	serial port used.					
OS	Windows 95/98 (English)					
Display	800×600 or more, 256-color or more display which can be used with Windows 95/98 (English).					
Keyboard	Which can be connected to the personal computer.					
Mouse	Which can be used with Windows 95/98(English). Note that a serial mouse is not used.					
Printer	Which can be used with Windows 95/98(English).					
Communication	MR-CPCATCBL3M					
cable	When this cannot be used, refer to (3) Section 13.1.4 and fabricate.					
RS-232C/RS-422	Needed to use the DC 499 multiduen communication function of the communication					
converter	Needed to use the RS-422 multidrop communication function of the servo amplifier.					

Note: 1. Windows is a trade mark of Microsoft Corporation.

^{2.} On some personal computers, this software may not run properly.

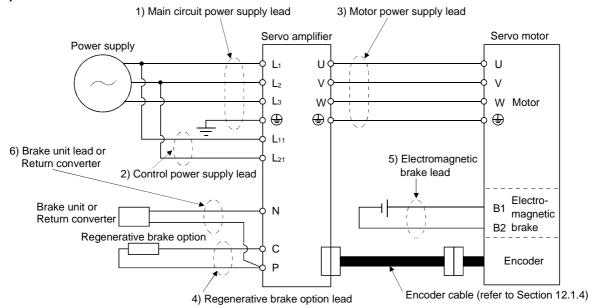

(b) Configuration diagram

1) When using RS-232C

2) When using RS-422

You can make multidrop connection of up to 32 axes.

Note: For cable connection, refer to section 14.1.1.


13.2 Auxiliary equipment

Always use the devices indicated in this section or equivalent. To comply with the EN Standard or UL/C-UL Standard, use the products which conform to the corresponding standard.

13.2.1 Recommended wires

(1) Wires for power supply wiring

The following diagram shows the wires used for wiring. Use the wires given in this section or equivalent.

The following table lists wire sizes. The wires used assume that they are 600V vinyl wires and the wiring distance is 30m(98.4ft) max. If the wiring distance is over 30m(98.4ft), choose the wire size in consideration of voltage drop.

The alphabets (a, b, c) in the table correspond to the crimping terminals (Table 13.2) used to wire the servo amplifier. For connection with the terminal block TE2 of the MR-J2S-100A or less, refer to Section 3.11.

The servo motor side connection method depends on the type and capacity of the servo motor. Refer to Section 3.8.

	(Note 1) Wires [mm ²]							
Servo amplifier	1) L1 · L2 · L3	2) L11 • L21	3) U · V · W · 🗎	4) P · C	5) B1 • B2			
MR-J2S-10A(1)								
MR-J2S-20A(1)								
MR-J2S-40A(1)	2 (AWG14) : a		1.25 (AWG16) : a					
MR-J2S-60A					1.25 (AWG16)			
MR-J2S-70A				2 (AWG14) : a				
MR-J2S-100A		1.25 (AWG16)	2 (AWG14) : a	2 (AWG14) . a				
MR-J2S-200A	3.5 (AWG12) : b		3.5 (AWG12) : b					
MR-J2S-350A			(Note 2)					
WIK-J25-330A	5.5 (AWG10) : b		5.5 (AWG10) : b					
MR-J2S-500A			5.5 (AWG10) : b					
MR-J2S-700A	8 (AWG8) : c		8 (AWG8) : c	3.5(AW12) : c				

Table 13.1 Recommended wires

Note: 1. For the crimping terminals and applicable tools, refer to table 13.2:

2. 3.5mm² for use of the HC-RFS203 servo motor.

Use wires 6) of the following sizes with the brake unit (FR-BU) and power return converter (FR-RC).

Model	Wires[mm ²]
FR-BU-15K	3.5(AWG12)
FR-BU-30K	5.5(AWG10)
FR-BU-55K	14(AWG6)
FR-RC-15K	14(AWG6)

Table 13.2 Recommended crimping terminals

C: make al	Servo amplifier side crimping terminals						
Symbol	Crimping terminal Applicable tool		Maker name				
a	32959	47387	AMP				
b	32968	59239	AMP				
С	FVD8-5	Body YF-1 • E-4 Head YNE-38 Die DH-111 • DH-121	Japan Solderless Terminal				

(2) Wires for cables

When fabricating a cable, use the wire models given in the following table or equivalent:

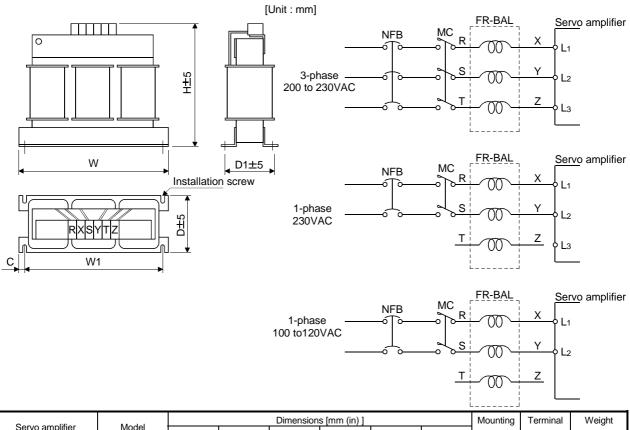
Table 13.3 Wires for option cables

		1 (1			С	haracteristics of	one core	(Note 3)	
Туре	Model	Length [m(ft)]	Core size [mm ²]	Number of Cores	Structure	Conductor	Insulation coating	Finishing	Wire model
					[Wires/mm]	resistance[Ω/mm]	ODd[mm] (Note 1)	OD [mm]	
		2 to 10	0.08	12	7/0.127	222	0.38	5.6	UL20276 AWG#28
	MR-JCCBL□M-L	(6.56 to 32.8) 20 30		(6 pairs)					6pair (BLAC) UL20276 AWG#22
		(65.6 98.4)	0.3	(6 pairs)	12/0.18	62	1.2	8.2	6pair (BLAC)
		2 · 5	0.2	12	40/0.08	105	0.88	7.2	(Note 2)
	MR-JCCBL□M-H	(6.56 • 16.4)		(6 pairs)					A14B2343 6P
	WIN SCOBLEWITI	10 to 50 (32.8 to 164)	0.2	14 (7 pairs)	40/0.08	105	0.88	8.0	(Note 2) A14B0238 7P
	MR-JHSCBL□M-L	2 • 5	0.08	8	7/0.127	222	0.38	4.7	UL20276 AWG#28
Encoder cable		(6.56 • 16.4)	0.00	(4 pairs)					4pair (BLAC)
Encoder cubic		10 to 30 (32.8 to 98.4)	0.3	12 (6 pairs)	12/0.18	62	1.2	8.2	UL20276 AWG#22 6pair (BLAC)
	MR-JHSCBL□M-H	2 · 5 (6.56 · 16.4)	0.2	8 (4 pairs)	40/0.08	105	0.88	6.5	(Note 2) A14B2339 4P
		10 to 50 (32.8 to 164)	0.2	12 (6 pairs)	40/0.08	105	0.88	7.2	(Note 2) A14B2343 6P
	MD ENCDI EM H	2 · 5 (6.56 · 16.4)	0.2	8 (4 pairs)	40/0.08	105	0.88	6.5	(Note 2) A14B2339 4P
	MR-ENCBL□M-H	10 to 50 (32.8 to 164)	0.2	12 (6 pairs)	40/0.08	105	0.88	7.2	(Note 2) A14B2343 6P
Communication cable	MR-CPCATCBL3M	3 (9.84)	0.08	6 (3 pairs)	7/0.127	222	0.38	4.6	UL20276 AWG#28 3pair (BLAC)
Bus cable	MR-J2HBUS□M	0.5 to 5 (1.64 to 16.4)	0.08	20 (10 pairs)	7/0.127	222	0.38	6.1	UL20276 AWG#28 10pair (CREAM)

Note 1: d is as shown below:

Conductor Insulation sheath

- 2: Purchased from Toa Electric Industry
- 3: Standard OD. Max. OD is about 10% greater.


13.2.2 No-fuse breakers, fuses, magnetic contactors

Always use one no-fuse breaker and one magnetic contactor with one servo amplifier. When using a fuse instead of the no-fuse breaker, use the one having the specifications given in this section.

Comus amanlifian	No-fuse breaker	Fuse			Magnetia contector	
Servo amplifier	No-ruse breaker	Class	Current [A]	Voltage [V]	Magnetic contactor	
MR-J2S-10A(1)	NF30 type 5A	K5	10			
MR-J2S-20A	NF30 type 5A	K5	10			
MR-J2S-40A • 20A1	NF30 type 10A	K5	15		S-N10	
MR-J2S-60A • 40A1	NF30 type 15A	K5	20		5-1110	
MR-J2S-70A	NF30 type 15A	K5	20	AC250		
MR-J2S-100A	NF30 type 15A	K5	25	AC250		
MR-J2S-200A	NF30 type 20A	K5	40		S-N18	
MR-J2S-350A	NF30 type 30A	K5	70		S-N20	
MR-J2S-500A	NF50 type 50A	K5	125		S-N35	
MR-J2S-700A	NF100 type 75A	K5	150		S-N50	

13.2.3 Power factor improving reactors

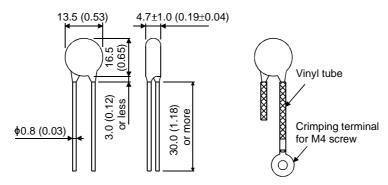
The input power factor is improved to be about 90%. For use with a 1-phase power supply, it may be slightly lower than 90%.

0	Dimensions [mm (in)]							Terminal	Weight	
Servo amplifier	Model	W	W1	Н	D	D1	С	screw size	screw size	[kg (lb)]
MR-J2S-10A(1)/20A	FR-BAL-0.4K	135 (5.31)	120 (4.72)	115 (4.53)	59 (2.32)	45 (1.77)	7.5 (0.29)	M4	M3.5	2.0 (4.4)
MR-J2S-40A/20A1	FR-BAL-0.75K	135 (5.31)	120 (4.72)	115 (4.53)	69 (2.72)	57 (2.24)	7.5 (0.29)	M4	M3.5	2.8 (6.17)
MR-J2S-60A/70A/40A1	FR-BAL-1.5K	160 (6.30)	145 (5.71)	140 (5.51)	71 (2.79)	55 (2.17)	7.5 (0.29)	M4	M3.5	3.7 (8.16)
MR-J2S-100A	FR-BAL-2.2K	160 (6.30)	145 (5.71)	140 (5.51)	91 (3.58)	75 (2.95)	7.5 (0.29)	M4	M3.5	5.6 (12.35)
MR-J2S-200A	FR-BAL-3.7K	220 (8.66)	200 (7.87)	192 (7.56)	90 (3.54)	70 (2.76)	10 (0.39)	M5	M4	8.5 (18.74)
MR-J2S-350A	FR-BAL-7.5K	220 (8.66)	200 (7.87)	194 (7.64)	120 (4.72)	100 (3.94)	10 (0.39)	M5	M5	14.5 (32.0)
MR-J2S-500A	FR-BAL-11K	280 (11.02)	255 (10.04)	220 (8.66)	135 (5.31)	100 (3.94)	12.5 (0.49)	M6	M6	19 (41.9)
MR-J2S-700A	FR-BAL-15K	295 (11.61)	270 (10.62)	275 (10.83)	133 (5.24)	110 (4.33)	12.5 (0.49)	M6	M6	27 (59.5)

13.2.4 Relays

The following relays should be used with the interfaces:

Interface	Selection example
Relay used especially for switching on-off analog input	To prevent defective contacts , use a relay for small signal
command and input command (interface DI-1) signals	(twin contacts).
	(Ex.) Omron : type G2A , MY
Relay used for digital output signals (interface DO-1)	Small relay with 12VDC or 24VDC of 40mA or less
	(Ex.) Omron : type MY


13.2.5 Surge absorbers

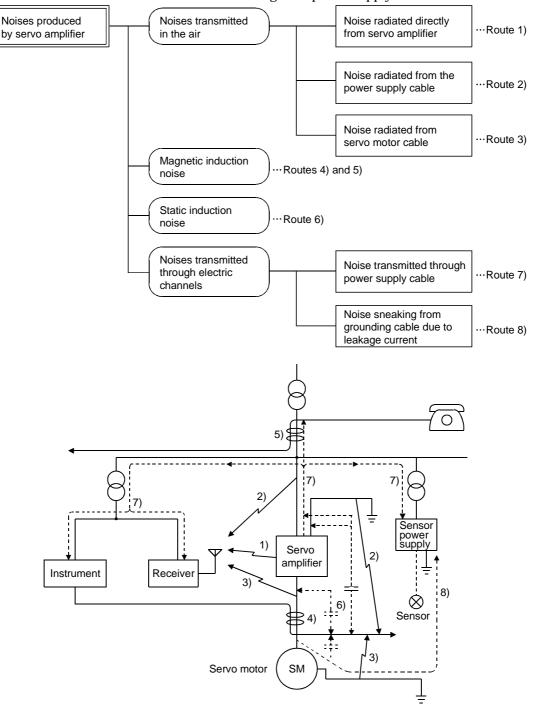
A surge absorber is required for the electromagnetic brake. Use the following surge absorber or equivalent. Insulate the wiring as shown in the diagram.

Maximum rating						Static		
Permissib volta		Surge immunity	Energy immunity	Rated power	Maximum limit voltage		capacity (reference value)	Varistor voltage rating (range) V1mA
AC[Vma]	DC[V]	[A]	[J]	[W]	[A]	[V]	[pF]	[V]
140	180	(Note) 500/time	5	0.4	25	360	300	220 (198 to 242)

Note: 1 time = $8 \times 20 \mu s$

(Example) ERZV10D221 (Matsushita Electric Industry) TNR-10V221K (Nippon chemi-con) Outline drawing [mm] ([in]) (ERZ-C10DK221)

13.2.6 Noise reduction techniques


Noises are classified into external noises which enter the servo amplifier to cause it to malfunction and those radiated by the servo amplifier to cause peripheral devices to malfunction. Since the servo amplifier is an electronic device which handles small signals, the following general noise reduction techniques are required.

Also, the servo amplifier can be a source of noise as its outputs are chopped by high carrier frequencies. If peripheral devices malfunction due to noises produced by the servo amplifier, noise suppression measures must be taken. The measures will vary slightly with the routes of noise transmission.

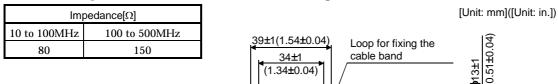
(1) Noise reduction techniques

- (a) General reduction techniques
 - Avoid laying power lines (input and output cables) and signal cables side by side or do not bundle them together. Separate power lines from signal cables.
 - Use shielded, twisted pair cables for connection with the encoder and for control signal transmission, and connect the shield to the SD terminal.
 - Ground the servo amplifier, servo motor, etc. together at one point (refer to Section 3.10).

- (b) Reduction techniques for external noises that cause the servo amplifier to malfunction If there are noise sources (such as a magnetic contactor, an electromagnetic brake, and many relays which make a large amount of noise) near the servo amplifier and the servo amplifier may malfunction, the following countermeasures are required.
 - Provide surge absorbers on the noise sources to suppress noises.
 - Attach data line filters to the signal cables.
 - Ground the shields of the encoder connecting cable and the control signal cables with cable clamp fittings.
- (c) Techniques for noises radiated by the servo amplifier that cause peripheral devices to malfunction Noises produced by the servo amplifier are classified into those radiated from the cables connected to the servo amplifier and its main circuits (input and output circuits), those induced electromagnetically or statically by the signal cables of the peripheral devices located near the main circuit cables, and those transmitted through the power supply cables.

Noise transmission route	Suppression techniques
1) 2) 3)	 When measuring instruments, receivers, sensors, etc. which handle weak signals and may malfunction due to noise and/or their signal cables are contained in a control box together with the servo amplifier or run near the servo amplifier, such devices may malfunction due to noises transmitted through the air. The following techniques are required. (1) Provide maximum clearance between easily affected devices and the servo amplifier. (2) Provide maximum clearance between easily affected signal cables and the I/O cables of the servo amplifier. (3) Avoid laying the power lines (Input cables of the servo amplifier) and signal cables side by side or bundling them together. (4) Insert a line noise filter to the I/O cables or a radio noise filter on the input line. (5) Use shielded wires for signal and power cables or put cables in separate metal conduits.
4) 5) 6)	When the power lines and the signal cables are laid side by side or bundled together, magnetic induction noise and static induction noise will be transmitted through the signal cables and malfunction may occur. The following techniques are required. (1) Provide maximum clearance between easily affected devices and the servo amplifier. (2) Provide maximum clearance between easily affected signal cables and the I/O cables of the servo amplifier. (3) Avoid laying the power lines (Input cables of the servo amplifier) and signal cables side by side or bundling them together. (4) Use shielded wires for signal and power cables or put the cables in separate metal conduits.
7)	When the power supply of peripheral devices is connected to the power supply of the servo amplifier system, noises produced by the servo amplifier may be transmitted back through the power supply cable and the devices may malfunction. The following techniques are required. (1) Insert the radio noise filter (FR-BIF) on the power cables (Input cables) of the servo amplifier. (2) Insert the line noise filter (FR-BSF01 • FR-BLF) on the power cables of the servo amplifier.
8)	When the cables of peripheral devices are connected to the servo amplifier to make a closed loop circuit, leakage current may flow to malfunction the peripheral devices. If so, malfunction may be prevented by disconnecting the grounding cable of the peripheral device.

(2) Noise reduction products


(a) Data line filter

Noise can be prevented by installing a data line filter onto the encoder cable, etc.

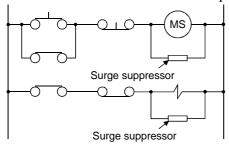
For example, the ZCAT3035-1330 of TDK and the ESD-SR-25 of Tokin make are available as data line filters.

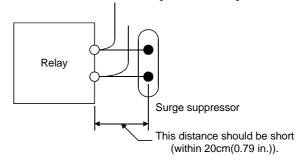
As a reference example, the impedance specifications of the ZCAT3035-1330 (TDK) are indicated below.

This impedances are reference values and not guaranteed values.

Product name

Outline drawing (ZCAT3035-1330)

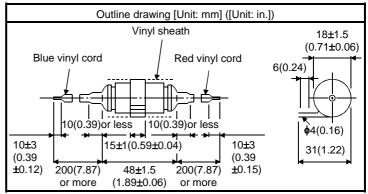

 (0.51 ± 0.04)


ф13±1

Lot number

(b) Surge suppressor

The recommended surge suppressor for installation to an AC relay, AC valve, AC electromagnetic brake or the like near the servo amplifier is shown below. Use this product or equivalent.



(Ex.) 972A.2003 50411 (Matsuo Electric Co.,Ltd.—200VAC rating)

Diode

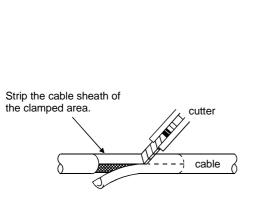
Rated voltage AC[V]	C [µF]	R [Ω]	Test voltage AC[V]
200	0.5	50 (1W)	Across T-C 1000(1 to 5s)

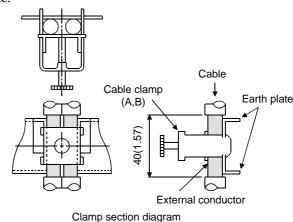
Note that a diode should be installed to a DC relay, DC valve or the like.

Maximum voltage: Not less than 4 times the drive voltage of

the relay or the like

Maximum current: Not less than twice the drive current of


the relay or the like

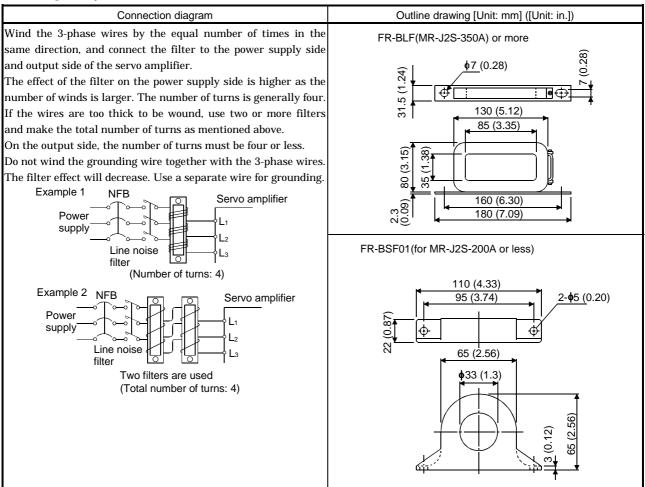

(c) Cable clamp fitting (AERSBAN □-SET)

Generally, the earth of the shielded cable may only be connected to the connector's SD terminal. However, the effect can be increased by directly connecting the cable to an earth plate as shown below.

Install the earth plate near the servo amplifier for the encoder cable. Peel part of the cable sheath to expose the external conductor, and press that part against the earth plate with the cable clamp. If the cable is thin, clamp several cables in a bunch.

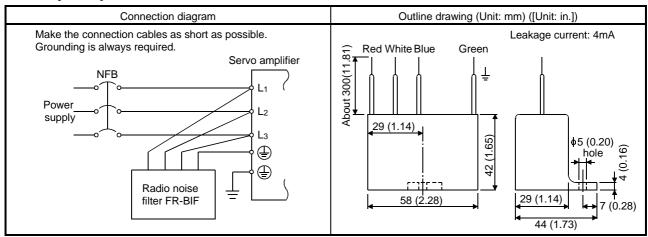
The clamp comes as a set with the earth plate.

Outline drawing


Note: Screw hole for grounding. Connect it to the earth plate of the control box.

Туре	Α	В	С	Accessory fittings	
AERSBAN-DSET	100	86	30	clamp A: 2pcs.	
AERSDAN-DSET	(3.94)	(3.39)	(1.18)	ciamp A. 2pcs.	
AERSBAN-ESET	70	56		clamp B: 1pc.	
AERSDAN-ESET	(2.76)	(2.20)		ciamp B. Tpc.	

Clamp fitting	L
Δ.	70
A	(2.76)
В	45
В	(1.77)

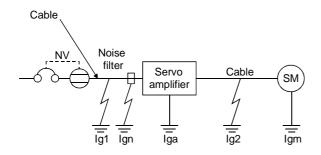

(d) Line noise filter (FR-BLF, FR-BSF01)

This filter is effective in suppressing noises radiated from the power supply side and output side of the servo amplifier and also in suppressing high-frequency leakage current (zero-phase current) especially within 0.5MHz to 5MHz band.

(e) Radio noise filter (FR-BIF)...for the input side only

This filter is effective in suppressing noises radiated from the power supply side of the servo amplifier especially in 10MHz and lower radio frequency bands. The FR-BIF is designed for the input only.

13.2.7 Leakage current breaker


(1) Selection method

High-frequency chopper currents controlled by pulse width modulation flow in the AC servo circuits. Leakage currents containing harmonic contents are larger than those of the motor which is run with a commercial power supply.

Select a leakage current breaker according to the following formula, and ground the servo amplifier, servo motor, etc. securely.

Make the input and output cables as short as possible, and also make the grounding cable as long as possible (about 30cm (11.8 in)) to minimize leakage currents.

Rated sensitivity current ≥ 10 • {Ig1+Ign+Iga+K • (Ig2+Igm)} [mA](13.2)

K: Constant considering the harmonic contents				
Leakage current b				
Туре	Mitsubishi products	K		
Models provided with harmonic and surge reduction techniques	NV-SF NV-CF	1		
General models	NV-CA NV-CS	3		

NV-SS

Ig1: Leakage current on the electric channel from the leakage current breaker to the input terminals of the servo amplifier (Found from Fig. 13.1.)

Ig2: Leakage current on the electric channel from the output terminals of the servo amplifier to the servo motor (Found from Fig. 13.1.)

Ign: Leakage current when a filter is connected to the input side (4.4mA per one FR-BIF)

Iga: Leakage current of the servo amplifier (Found from Table 13.6.)

Igm: Leakage current of the servo motor (Found from Table 13.5.)

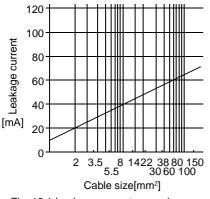


Fig. 13.1 Leakage current example (Ig1, Ig2) for CV cable run in metal conduit

Table 13.5 Servo motor's leakage current example (Igm)

	mannpro (rgiii)
Servo motor	Leakage
output [kW]	current [mA]
0.05 to 0.5	0.1
0.6 to 1.0	0.1
1.2 to 2.2	0.2
3 to 3.5	0.3
5	0.5
7	0.7
	0.5

Table 13.6 Servo amplifier's leakage current example (Iga)

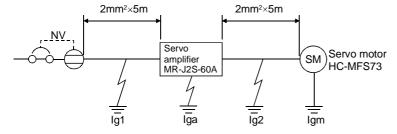

	1 (0)
Servo amplifier	Leakage
capacity [kW]	current [mA]
0.1 to 0.6	0.1
0.7 to 3.5	0.15
5 • 7	2

Table 13.7 Leakage circuit breaker selection example

rabio ron Ecanago en can breanci ecicenten example				
Servo amplifier	Rated sensitivity current of leakage circuit breaker [mA]			
MR-J2S-10A to MR-J2S-350A MR-J2S-10A1 to MR-J2S-40A1	15			
MR-J2S-500A	30			
MR-J2S-700A	50			

(2) Selection example

Indicated below is an example of selecting a leakage current breaker under the following conditions:

Use a leakage current breaker generally available.

Find the terms of Equation (13.2) from the diagram:

$$Ig1 = 20 \cdot \frac{5}{1000} = 0.1 \text{ [mA]}$$

$$Ig2 = 20 \cdot \frac{5}{1000} = 0.1 \text{ [mA]}$$

Ign = 0 (not used)

Iga = 0.1 [mA]

Igm = 0.1 [mA]

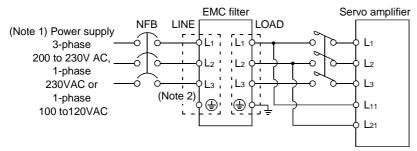
Insert these values in Equation (13.2):

$$Ig \ge 10 \cdot \{0.1+0+0.1+3 \cdot (0.1+0.1)\}$$

 $\geq 8.0 \text{ [mA]}$

According to the result of calculation, use a leakage current breaker having the rated sensitivity current (Ig) of 8.0[mA] or more. A leakage current breaker having Ig of 15[mA] is used with the NV-CA/CS/SS series.

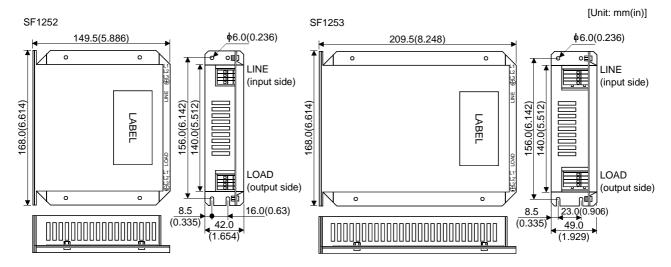
13.2.8 EMC filter

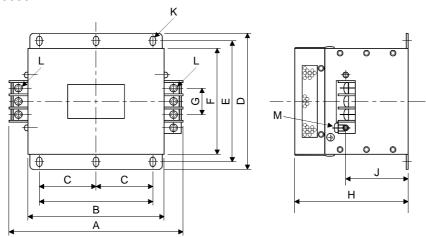

For compliance with the EMC Directive of the EN Standard, it is recommended to use the following filter:

(1) Combination with the servo amplifier

Componentifica	Recomme	\\\\ai=\ab=\[\cdot [] \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
Servo amplifier	Model	Leakage current [mA]	Weight [kg]([lb])	
MR-J2S-10A to MR-J2S-100A	SF1252	38	0.75 (1.65)	
MR-J2S-10A1 to MR-J2S-40A1	51.1232	36		
MR-J2S-200A • MR-J2S-350A	SF1253	57	1.37 (1.65)	
MR-J2S-500A	(Note) HF-3040A-TM	1.5	5.5 (12.13)	
MR-J2S-700A	(Note) HF-3050A-TM	1.5	6.7 (14.77)	

Note: Soshin Electric


(2) Connection example


Note: 1. For 1-phase 230VAC power supply, connect the power supply to L_1,L_2 and leave L_3 open. There is no L_3 for 1-phase 100 to 120VAC power supply.

2. Connect when the power supply has earth.

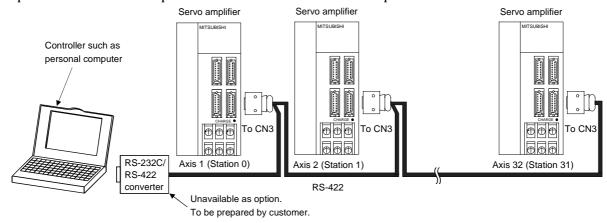
(3) Outline drawing

HF3040-TM • HF-3050A-TM

Model						Dimension	ıs [mm(in)]				
	Α	В	С	D	Е	F	G	Н	J	K	L	М
HF3040A-TM	260	210	85	155	140	125	44	140	70		M5	M4
HF 3040A-1M	(10.23)	(8.27)	(3.35)	(6.10)	(5.51)	(4.92)	(1.73)	(5.51)	(2.76)	R3.25,		
LIESONOA TM	290	240	100	190	175	160	44	170	100	length 8	Me	M4
HF3050A-TM	(11.42)	(9.45)	(3.94)	(7.48)	(6.89)	(6.30)	(1.73)	(5.51)	(3.94)		M6	

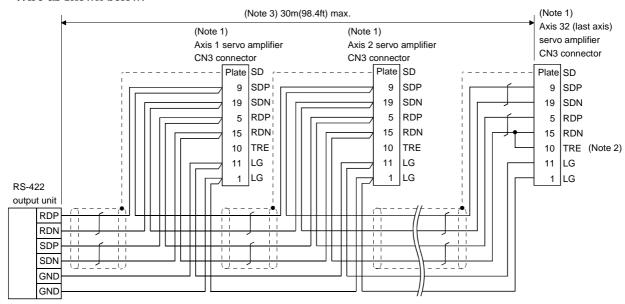
14. COMMUNICATION FUNCTIONS

This servo amplifier has the RS-422 and RS-232C serial communication functions. These functions can be used to perform servo operation, parameter changing, monitor function, etc.


However, the RS-422 and RS-232C communication functions cannot be used together. Select between RS-422 and RS-232C with parameter No.16. (Refer to Section 14.2.2.)

14.1 Configuration

14.1.1 RS-422 configuration

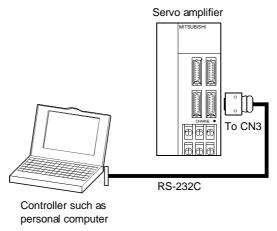

(1) Outline

Up to 32 axes of servo amplifiers from stations 0 to 31 can be operated on the same bus.

(2) Cable connection diagram

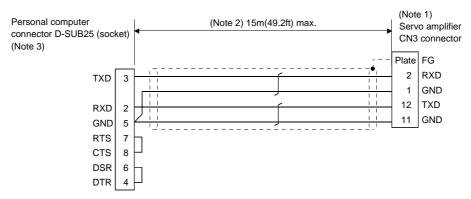
Wire as shown below:

Note: 1. Connector set MR-J2CN1(3M or equivalent)


Connector: 10120-3000VE Shell kit: 10320-52F0-008

- 2. In the last axis, connect TRE and RDN.
- 3. 30m max. in environment of little noise.

14.1.2 RS-232C configuration


(1) Outline

A single axis of servo amplifier is operated.

(2) Cable connection diagram

Wire as shown below. The communication cable for connection with the personal computer (MR-CPCATCBL3M) is available. (Refer to Section 13.1.4.)

Note: 1. 3M's CN3 connector

Connector: 10120-6000EL Shell kit: 10320-3210-000

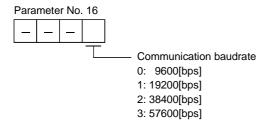
- $2.\ 15m(49.2ft)$ max. in environment of little noise. However, this distance should be 3m(9.84ft) max. for use at 38400bps or more baudrate.
- 3. For PC-AT compatible controller.

14.2 Communication specifications

14.2.1 Communication overview

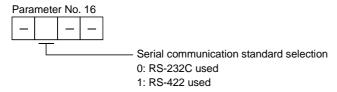
This servo amplifier is designed to send a reply on receipt of an instruction. The device which gives this instruction (e.g. personal computer) is called a master station and the device which sends a reply in response to the instruction (servo amplifier) is called a slave station. When fetching data successively, the master station repeatedly commands the slave station to send data.

Item	Description						
Baudrate	9600/19200/38400/57600 asynchronous system						
	Start bit : 1 bit						
Transfer code	Data bit : 8 bits						
Transfer code	Parity bit : 1 bit (even)						
	Stop bit : 1 bit						
Transfer protocol	Character system, half-duplex communication system						

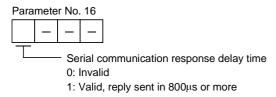

14.2.2 Parameter setting

When the RS-422/RS-232C communication function is used to operate the servo, set the communication specifications of the servo amplifier in the corresponding parameters.

After setting the values of these parameters, they are made valid by switching power off once, then on again.


(1) Serial communication baudrate

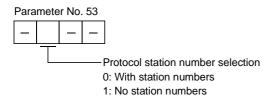
Choose the communication speed. Match this value to the communication speed of the sending end (master station).


(2) Serial communication selection

Select the RS-422 or RS-232C communication standard. RS-422 and RS-232C cannot be used together.

(3) Serial communication response delay time

Set the time from when the servo amplifier (slave station) receives communication data to when it sends back data. Set "0" to send back data in less than $800\mu s$ or "1" to send back data in $800\mu s$ or more.

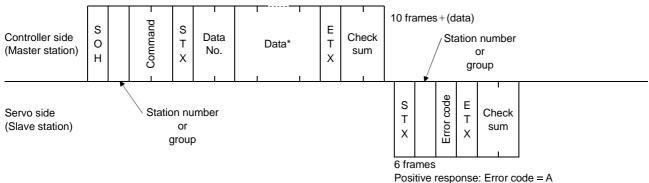


(4) Station number setting

Set the station number of the servo amplifier in parameter No. 15. The setting range is stations 0 to 31.

(5) Protocol station number selection

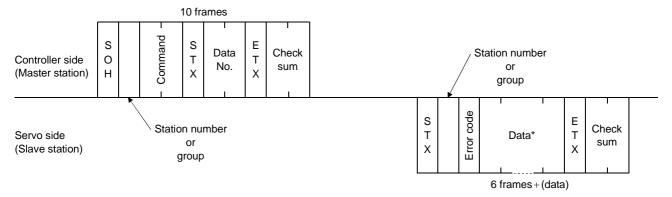
When communication is made without setting station numbers to servo amplifiers as in the MR-J2-A servo amplifiers, choose "no station numbers" in parameter No. 53. The communication protocol will be free of station numbers.

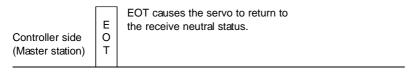

14.3 Protocol

POINT

• Whether station number setting will be made or not must be selected if the RS-232C communication function is used. Note that choosing "no station numbers" in parameter No. 53 will make the communication protocol free of station numbers as in the MR-J2-A servo amplifiers.

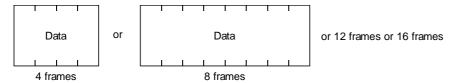
Since up to 32 axes may be connected to the bus, add a station number or group to the command, data No., etc. to determine the destination servo amplifier of data communication. Set the station number to each servo amplifier using the parameter and set the group to each station using the communication command. Transmission data is valid for the servo amplifier of the specified station number or group. When "*" is set as the station number added to the transmission data, the transmission data is made valid for all servo amplifiers connected. However, when return data is required from the servo amplifier in response to the transmission data, set "0" to the station number of the servo amplifier which must provide the return data.


(1) Transmission of data from the controller to the servo


Negative response: Error code = A

Negative response: Error code = other than A

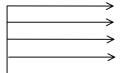
(2) Transmission of data request from the controller to the servo


(3) Recovery of communication status by time-out

Servo side (Slave station)

(4) Data frames

The data length depends on the command.


14.4 Character codes

(1) Control codes

Code name	Hexadecimal (ASCII code)	Description	Personal computer terminal key operation (General)
SOH	01H	start of head	ctrl + A
STX	02H	start of text	ctrl + B
ETX	03H	end of text	ctrl + C
EOT	04H	end of transmission	ctrl + D

(2) Codes for data

JIS8 unit codes are used.

b8	0	0	0	0	0	0	0	0
b7	0	0	0	0	1	1	1	1
b6	0	0	1	1	0	0	1	1
\mathbf{b}_5	0	1	0	1	0	1	0	1

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	b ₁
	51
0 0 0	0
0 0 0	1
0 0 1	0
0 0 1	1
0 1 0	0
0 1 0	1
0 1 1	0
0 1 1	1
1 0 0	0
1 0 0	1
1 0 1	0
1 0 1	1
1 1 0	0
1 1 0	1
1 1 1	0
1 1 1	1

C R	0	1	2	3	4	5	6	7
0	NUL	DLE	Space	0	@	P	,	p
1	SOH	DC_1	!	1	Α	Q	a	q
2	STX	DC ₂	u	2	В	R	b	r
3	ETX	DC ₃	#	3	С	S	С	s
4			\$	4	D	Т	d	t
5			%	5	Е	U	e	u
6			&	6	F	V	f	v
7			•	7	G	W	g	W
8			(8	Н	X	h	х
9)	9	I	Y	i	y
10			*	:	J	Z	j	Z
11			+	;	K	[k	{
12			,	٧	L	¥	l	
13			_	Ш	M]	m	}
14				۸	N	<	n	
15			/	?	0	_	0	DEL

(3) Station numbers

You may set 32 station numbers from station 0 to station 31 and the JIS8 unit codes are used to specify the stations.

Station number	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
JIS8 code	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	E	F

Station number	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
JIS8 code	G	Н	Ι	J	K	L	M	N	0	P	Q	R	S	T	U	V

For example, "30H" is transmitted in hexadecimal for the station number of "0" (axis 1).

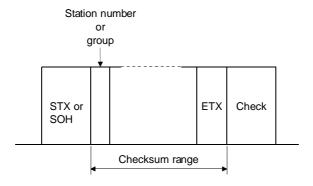
(4) Group

Group	a	b	с	d	e	f	All group
JIS8 code	a	b	С	d	e	f	*

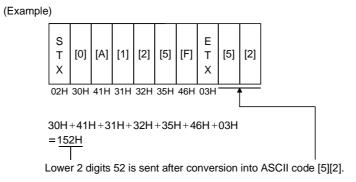
For example, "61H" is transmitted in hexadecimal for group a.

14.5 Error codes

Error codes are used in the following cases and an error code of single-code length is transmitted.

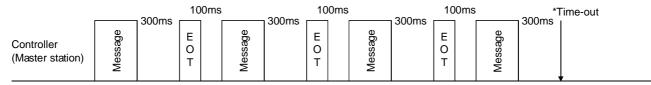

On receipt of data from the master station, the slave station sends the error code corresponding to that data to the master station.

The error code sent in upper case indicates that the servo is normal and the one in lower case indicates that an alarm occurred.


Error code			Decement	Damada				
Servo normal	Servo alarm	Error name	Description	Remarks				
[A]	[a]	Normal operation	Data transmitted was processed properly.	Positive response				
[B]	[b]	Parity error	Parity error occurred in the transmitted data.					
[C]	[c]	Checksum error	Checksum error occurred in the transmitted data.					
[D]	[d]	Character error	aracter error Character not existing in the specifications was transmitted.					
[E]	[e]	Command error	Command not existing in the specifications was transmitted.	Negative response				
[F]	[f]	Data No. error	Data No. not existing in the specifications was transmitted.					

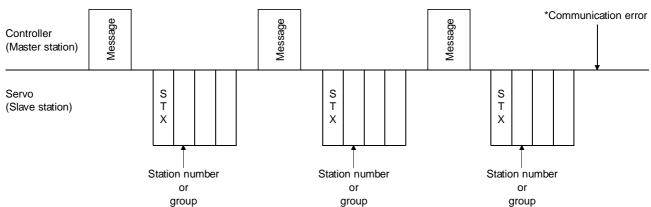
14.6 Checksum

Checksum range



The check sum is a JIS8-coded hexadecimal representing the lower two digits of the sum of JIS8-coded hexadecimal numbers up to ETX, with the exception of the first control code (STX or S0H).

14.7 Time-out operation


The master station transmits EOT when the slave station does not start reply operation (STX is not received) 300[ms] after the master station has ended communication operation. 100[ms] after that, the master station retransmits the message. Time-out occurs if the slave station does not answer after the master station has performed the above operation three times. (Communication error)

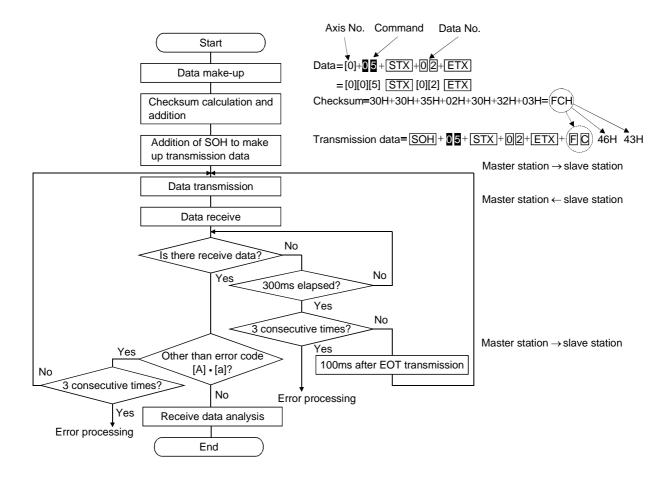
Servo (Slave station)

14.8 Retry operation

When a fault occurs in communication between the master and slave stations, the error code in the response data from the slave station is a negative response code ([B] to [F], [b] to [f]). In this case, the master station retransmits the message which was sent at the occurrence of the fault (Retry operation). A communication error occurs if the above operation is repeated and results in the error three or more consecutive times.

Similarly, when the master station detects a fault (e.g. checksum, parity) in the response data from the slave station, the master station retransmits the message which was sent at the occurrence of the fault. A communication error occurs if the retry operation is performed three times.

14.9 Initialization


After the slave station is switched on, it cannot reply to communication until the internal initialization processing terminates. Hence, at power-on, ordinary communication should be started after:

- (1) 1s or more time has elapsed after the slave station is switched on; and
- (2) Making sure that normal communication can be made by reading the parameter or other data which does not pose any safety problems.

14.10 Communication procedure example

The following example reads the set value of parameter No.2 "function selection 1" from the servo amplifier of station 0:

Data item	Value	Description
Station number	0	Servo amplifier station 0
Command	05	Read command
Data No.	02	Parameter No.2

14.11 Command and data No. list

14.11.1 Read commands

(1) Status display (Command [0][1])

Command	Data No.	Description	Display item	Frame length
[0][1]	[8][0]	Status display data value and	cumulative feedback pulses	12
[0][1]	[8][1]	processing information	servo motor speed	12
[0][1]	[8][2]		droop pulses	12
[0][1]	[8][3]		cumulative command pulses	12
[0][1]	[8][4]		command pulse frequency	12
[0][1]	[8][5]		analog speed command voltage analog speed limit voltage	12
[0][1]	[8][6]		analog torque command voltage analog torque limit voltage	12
[0][1]	[8][7]		regenerative load ratio	12
[0][1]	[8][8]		effective load ratio	12
[0][1]	[8][9]		peak load ratio	12
[0][1]	[8][A]		Instantaneous torque	12
[0][1]	[8][B]		within one-revolution position	12
[0][1]	[8][C]		ABS counter	12
[0][1]	[8][D]		load inertia moment ratio	12
[0][1]	[8][E]		Bus voltage	12

(2) Parameter (Command [0][5])

Command	Data No.	Description	Frame length
[0][5]	[0][0] to	Current value of each parameter	8
	[5][4]	The decimal equivalent of the data No. value (hexadecimal) corresponds	
		to the parameter number.	

(3) External I/O signals (Command [1][2])

Command	Data No.	Description	Frame length
[1][2]	[4][0]	External input pin statuses	8
[1][2]	[C][0]	External output pin statuses	8

(4) Alarm history (Command [3][3])

Command	Data No.	Description	Alarm occurrence sequence	Frame length
[3][3]	[1][0]	Alarm number in alarm history	most recent alarm	4
[3][3]	[1][1]		first alarm in past	4
[3][3]	[1][2]		second alarm in past	4
[3][3]	[1][3]		third alarm in past	4
[3][3]	[1][4]		fourth alarm in past	4
[3][3]	[1][5]		fifth alarm in past	4
[3][3]	[2][0]		most recent alarm	8
[3][3]	[2][1]		first alarm in past	8
[3][3]	[2][2]	Alarm occurrence time in alarm	second alarm in past	8
[3][3]	[2][3]	history	third alarm in past	8
[3][3]	[2][4]		fourth alarm in past	8
[3][3]	[2][5]		fifth alarm in past	8

(5) Current alarm (Command [0][2] • [3][5])

Command	Data No.	Description	Frame length
[0][2]	[0][0]	Current alarm number	4

Command	Data No.	Description	Display item	Frame length
[3][5]	[8][0]	Status display data value and	cumulative feedback pulses	12
[3][5]	[8][1]	processing information at alarm	servo motor speed	12
[3][5]	[8][2]	occurrence	droop pulses	12
[3][5]	[8][3]		cumulative command pulses	12
[3][5]	[8][4]		command pulse frequency	12
[3][5]	[8][5]		analog speed command voltage analog speed limit voltage	12
[3][5]	[8][6]		analog torque command voltage analog torque limit voltage	12
[3][5]	[8][7]		regenerative load ratio	12
[3][5]	[8][8]		effective load ratio	12
[3][5]	[8][9]		peak load ratio	12
[3][5]	[8][A]		Instantaneous torque	12
[3][5]	[8][B]		within one-revolution position	12
[3][5]	[8][C]		ABS counter	12
[3][5]	[8][D]		load inertia moment ratio	12
[3][5]	[8][E]		Bus voltage	12

(6) Group setting (Command [1][F])

Command	Data No.	Description	Frame length
[1][F]	[0][0]	Reading of group setting value	4

(7) Others

Command	Data No.	Description	Frame length
[0][2]	[9][0]	Servo motor end pulse unit absolute position	8
[0][2]	[9][1]	Command unit absolute position	8
[0][2]	[7][0]	Software version	16

14.11.2 Write commands

(1) Status display (Command [8][1])

Command	Data No.	Description	Setting range	Frame length
[8][1]	[0][0]	Status display data clear	1EA5	4

(2) Parameter (Command [8][4])

Command	Data No.	Description	Setting range	Frame length
[8][4]		Each parameter write	Depends on the	8
	[5][4]	The decimal equivalent of the data No. value (hexadecimal) corresponds to the parameter	parameter.	
		number.		

(3) Alarm history (Command [8][2])

Command	Data No.	Description	Setting range	Frame length
[8][2]	[2][0]	Alarm history clear	1EA5	4

(4) Current alarm (Command [8][2])

Co	mmand	Data No.	Description	Setting range	Frame length
	[8][2]	[0][0]	Alarm reset	1EA5	4

(5) Operation mode selection (Command [8][B])

Command	Data No.	Description	Setting range	Frame length
[8][B]	[0][0]	Operation mode changing	0000 to 0004	4
		0000: Exit from test operation mode		
		0001: Jog operation		
		0002: Positioning operation		
		0003: Motor-less operation		
		0004: Output signal (DO) forced output		

(6) External input signal disable (Command [9][0])

Command	Data No.	Description	Setting range	Frame length
[9][0]	[0][0]	Turns off the external input signals (DI), external analog input signals and pulse train inputs with the exception of EMG, LSP and LSN, independently of the external ON/OFF statuses.	1EA5	4
[9][0]	[0][3]	Changes the external output signals (DO) into the value of command [8][B] or command [A][0] + data No. [0][1].	1EA5	4
[9][0]	[1][0]	Enables the disabled external input signals (DI), external analog input signals and pulse train inputs with the exception of EMG, LSP and LSN.	1EA5	4
[9][0]	[1][3]	Enables the disabled external output signals (DO).	1EA5	4

(7) Data for test operation mode (Command [9][2] • [A][0])

Command	Data No.	Description	Setting range	Frame length
[9][2]	[0][0]	Input signal for test operation		8
[9][2]	[A][0]	Forced output from signal pin		8

Command	Data No.	Description	Setting range	Frame length
[A][0]	[1][0]	Writes the speed of the test operation mode (jog operation, positioning operation).	0000 to 7FFF	4
[A][0]	[1][1]	Writes the acceleration/deceleration time constant of the test 00000000 to peration mode (jog operation, positioning operation). 7FFFFFFF		8
[A][0]	[1][2]	Clears the acceleration/deceleration time constant of the test operation mode (jog operation, positioning operation).		4
[A][0]	[1][3]	Writes the moving distance (in pulses) of the test operation mode (jog operation, positioning operation). 80000000 7FFFFF		8
[A][0]	[1][5]	Temporary stop command of the test operation mode (jog operation, positioning operation)	1EA5	4

(8) Group setting (Command [9][F])

Command	Data No.	Description	Setting range	Frame length
[9][F]	[0][0]	Setting of group		4

14.12 Detailed explanations of commands

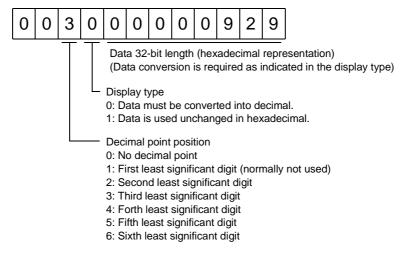
14.12.1 Data processing

When the master station transmits a command + data No. or a command + data No. + data to a slave station, the servo amplifier returns a reply or data according to the purpose.

When numerical values are represented in these send data and receive data, they are represented in decimal, hexadecimal, etc.

Therefore, data must be processed according to the application.

Since whether data must be processed or not and how to process data depend on the monitoring, parameters, etc., follow the detailed explanation of the corresponding command.

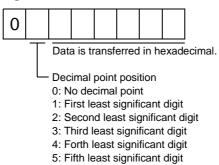

The following methods are how to process send and receive data when reading and writing data.

(1) Processing the read data

When the display type is 0, the eight-character data is converted from hexadecimal to decimal and a decimal point is placed according to the decimal point position information.

When the display type is 1, the eight-character data is used unchanged.

The following example indicates how to process the receive data "003000000929" given to show. The receive data is as follows.


Since the display type is "0" in this case, the hexadecimal data is converted into decimal. $00000929H \rightarrow 2345$

As the decimal point position is "3", a decimal point is placed in the third least significant digit. Hence, "23.45" is displayed.

(2) Writing the processed data

When the data to be written is handled as decimal, the decimal point position must be specified. If it is not specified, the data cannot be written. When the data is handled as hexadecimal, specify "0" as the decimal point position.

The data to be sent is the following value.

By way of example, here is described how to process the set data when a value of "15.5" is sent.

Since the decimal point position is the second digit, the decimal point position data is "2".

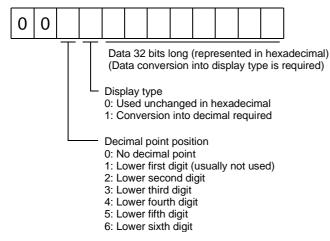
As the data to be sent is hexadecimal, the decimal data is converted into hexadecimal.

155→9B

Hence, "0200009B" is transmitted.

14.12.2 Status display

(1) Status display data read


When the master station transmits the data No. (refer to the following table for assignment) to the slave station, the slave station sends back the data value and data processing information.

1) Transmission

Transmit command [0][1] and the data No. corresponding to the status display item to be read. Refer to Section 14.11.1.

2) Reply

The slave station sends back the status display data requested.

(2) Status display data clear

The cumulative feedback pulse data of the status display is cleared. Send this command immediately after reading the status display item. The data of the status display item transmitted is cleared to zero.

Command	Data No.	Data
[8][1]	[0][0]	1EA5

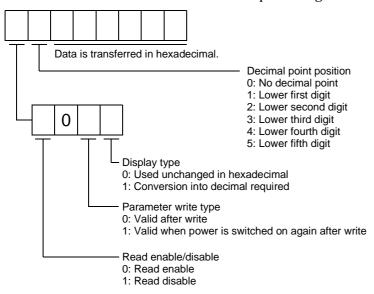
For example, after sending command [0][1] and data No. [8][0] and receiving the status display data, send command [8][1], data No. [0][0] and data [1EA5] to clear the cumulative feedback pulse value to zero.

14.12.3 Parameter

(1) Parameter read

Read the parameter setting.

1) Transmission


Transmit command [0][5] and the data No. corresponding to the parameter No.

The data No. is expressed in hexadecimal equivalent of the data No. value corresponds to the parameter number.

Command	Data No.
[0][5]	[0][0] to
	[5][4]

2) Reply

The slave station sends back the data and processing information of the requested parameter No.

Enable/disable information changes according to the setting of parameter No.19 "parameter write inhibit". When the enable/disable setting is read disable, ignore the parameter data part and process it as unreadable.

(2) Parameter write

POINT

• The number of parameter write times is restricted to 1,000,000 times.

Write the parameter setting.

Write the value within the setting range. Refer to Section 5.1 for the setting range.

Transmit command [8][4], the data No., and the set data.

The data No. is expressed in hexadecimal. The decimal equivalent of the data No. value corresponds to the parameter number.

When the data to be written is handled as decimal, the decimal point position must be specified. If it is not specified, data cannot be written. When the data is handled as hexadecimal, specify 0 as the decimal point position.

Write the data after making sure that it is within the upper/lower limit value range given in Section 5.1.2. Read the parameter data to be written, confirm the decimal point position, and create transmission data to prevent error occurrence. On completion of write, read the same parameter data to verify that data has been written correctly.

Command	Data No.	Set data
[8][4]	[0][0] to	See below.
	[5][4]	

Data is transferred in hexadecimal.

Decimal point position

- 0: No decimal point
- 1: Lower first digit
- 2: Lower second digit
- 3: Lower third digit
- 4: Lower forth digit
- 5: Lower fifth digit

Write mode

- 0: Write to EEP-ROM
- 3: Write to RAM

When using communication to change parameter values frequently, set "3" here and change data on RAM in the servo amplifier.

Frequent change to EEP-ROM data may cause the permissible write times (1 million times) of EEP-ROM to be exceeded, leading to a failure.

14.12.4 External I/O pin statuses (DIO diagnosis)

(1) External input pin status read

Read the ON/OFF statuses of the external input pins.

(a) Transmission

Transmit command [1][2] and data No. [4][0].

Command	Data No.
[1][2]	[4][0]

(b) Reply

The ON/OFF statuses of the input pins are sent back.

Command of each bit is transmitted to the master station as hexadecimal data.

bit	External input pin	
0	CN1B-16	
1	CN1B-17	
2	CN1B-15	
3	CN1B-5	
4	CN1B-14	
5	CN1A-8	
6	CN1B-7	
7	CN1B-8	

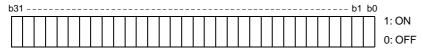
bit	External input pin
8	CN1B-9
9	
10	
11	
12	
13	
14	
15	

bit	External input pin
16	
17	
18	
19	
20	
21	
22	
23	

bit	External input pin
24	
25	
26	
27	
28	
29	
30	
31	

(2) External output pin status read

Read the ON/OFF statuses of the external output pins.


(a) Transmission

Transmit command [1][2] and data No. [C][0].

Command	Data No.
[1][2]	[C][0]

(b) Reply

The slave station sends back the ON/OFF statuses of the output pins.

Command of each bit is transmitted to the master station as hexadecimal data.

bit	External output pin		
0	CN1A-19		
1	CN1A-18		
2	CN1B-19		
3	CN1B-6		
4	CN1B-4		
5	CN1B-18		
6	CN1A-14		
7			

bit	External output pin
8	
9	
10	
11	
12	
13	
14	
15	

bit	External output pin		
16			
17			
18			
19			
20			
21			
22			
23			

bit	External output pin
24	
25	
26	
27	
28	
29	
30	
31	

14.12.5 Disable/enable of external I/O signals (DIO)

Inputs can be disabled independently of the external I/O signal ON/OFF. When inputs are disabled, the input signals are recognized as follows. Among the external input signals, EMG, LSP and LSN cannot be disabled.

Signal	Status
External input signals (DI)	OFF
External analog input signals	0V
Pulse train inputs	None

(1) Disabling/enabling the external input signals (DI), external analog input signals and pulse train inputs with the exception of EMG, LSP and LSN.

Transmit the following communication commands:

(a) Disable

Command	Data No.	Data
[9][0]	[0][0]	1EA5

(b) Enable

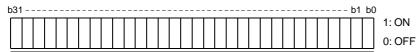
Command	Data No.	Data
[9][0]	[1][0]	1EA5

(2) Disabling/enabling the external output signals (DO)

Transmit the following communication commands:

(a) Disable

Command	Data No.	Data
[9][0]	[0][3]	1EA5


(b) Enable

Command	Data No.	Data
[9][0]	[1][3]	1EA5

14.12.6 External input signal ON/OFF (test operation)

Each input signal can be turned on/off for test operation. Turn off the external input signals. Send command [9] [2], data No. [0] [0] and data.

Command	Data No.	Set data
[9][2]	[0][0]	See below

Command of each bit is transmitted to the slave station as hexadecimal data.

bit	Signal abbreviation
0	SON
1	LSP
2	LSN
3	TL
4	
5	PC
6	RES
7	CR

bit	Signal abbreviation
8	
9	
10	
11	ST1
12	ST2
13	
14	
15	

bit	Signal abbreviation
16	
17	
18	
19	
20	
21	
22	
23	

bit	Signal abbreviation
24	
25	
26	
27	
28	
29	
30	
31	

14.12.7 Test operation mode

(1) Instructions for test operation mode

The test operation mode must be executed in the following procedure. If communication is interrupted for longer than 0.5s during test operation, the servo amplifier causes the motor to be decelerated to a stop and servo-locked. To prevent this, continue communication without a break, e.g. monitor the status display.

(a) Execution of test operation

- 1) Turn off all external input signals.
- 2) Disable the external input signals.

Command	Data No.	Data	
[9][0]	[0][0]	1EA5	

3) Choose the test operation mode.

Command	Data No.	Transmission data	Selection of test operation mode
[8][B]	[0][0]	0000	Test operation mode cancel
[8][B]	[0][0]	0001	Jog operation
[8][B]	[0][0]	0002	Positioning operation
[8][B]	[0][0]	0003	Motor-less operation
[8][B]	[0][0]	0004	DO forced output

- 4) Set the data needed for test operation.
- 5) Start.
- 6) Continue communication using the status display or other command.

(b) Termination of test operation

To terminate the test operation mode, complete the corresponding operation and:

1) Clear the test operation acceleration/deceleration time constant.

Command	Data No.	Data
[A][0]	[1][2]	1EA5

2) Cancel the test operation mode.

Command	Data No.	Data
[8][B]	[0][0]	0000

3) Enable the disabled external input signals.

Command	Data No.	Data
[9][0]	[1][0]	1EA5

(2) Jog operation

Transmit the following communication commands:

(a) Setting of jog operation data

Item	Command	Data No.	Data
Speed	[A][0]	[1][0]	Write the speed [r/min] in hexadecimal.
Acceleration/decelerati	[A][0]	[1][1]	Write the acceleration/deceleration time constant
on time constant			[ms] in hexadecimal.

(b) Start

Turn on the external input signals SON and ST1/ST2 by using command [9][2] + data No. [0][0].

Item	Command	Data No.	Data
Forward rotation start	[9][2]	[0][0]	00000801: Turns on SON and ST1.
Reverse rotation start	[9][2]	[0][0]	00001001: Turns on SON and ST2.

(3) Positioning operation

Transmit the following communication commands:

(a) Setting of positioning operation data

Item	Command	Data No.	Data
Speed	[A][0]	[1][0]	Write the speed [r/min] in hexadecimal.
Acceleration/decelerat	[A][0]	[1][1]	Write the acceleration/deceleration time constant
ion time constant			[ms] in hexadecimal.
Moving distance	[A][0]	[1][3]	Write the moving distance [pulse] in
			hexadecimal.

(b) Start

Turn on the external input signals SON and ST1/ST2 by using command [9][2] + data No. [0][0].

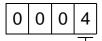
Item	Command	Data No.	Data
Forward rotation start	[9][2]	[0][0]	00000801: Turns on SON and ST1.
Reverse rotation start	[9][2]	[0][0]	00001001: Turns on SON and ST2.

(c) Temporary stop

A temporary stop can be made during positioning operation.

Command	Data No.	Data
[A][0]	[1][5]	1EA5

Retransmit the same communication commands as at the start time to resume operation.


To stop positioning operation after a temporary stop, retransmit the temporary stop communication command. The remaining moving distance is then cleared.

14.12.8 Output signal pin ON/OFF output signal (DO) forced output

In the test operation mode, the output signal pins can be turned on/off independently of the servo status. Using command [9][0], disable the output signals in advance.

(1) Choosing DO forced output in test operation mode

Transmit command [8][B] + data No. [0][0] + data "0004" to choose DO forced output.

- Selection of test operation mode

4: DO forced output (output signal forced output)

(2) External output signal ON/OFF

Transmit the following communication commands:

Command	Data No.	Setting data
[9][2]	[A][0]	See below.

Command of each bit is sent to the slave station in hexadecimal.

bit	External output pin
0	CN1A-19
1	CN1A-18
2	CN1B-19
3	CN1B-6
4	CN1B-4
5	CN1B-18
6	CN1A-14
7	

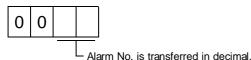
bit	External output pin
8	
9	
10	
11	
12	
13	
14	
15	

bit	External output pin
16	
17	
18	
19	
20	
21	
22	
23	

bit	External output pin
24	
25	
26	
27	
28	
29	
30	
31	

14.12.9 Alarm history

(1) Alarm No. read


Read the alarm No. which occurred in the past. The alarm numbers and occurrence times of No. 0 (last alarm) to No. 5 (sixth alarm in the past) are read.

(a) Transmission

Send command [3][3] and data No. [1][0] to [1][5]. Refer to Section 14.11.1.

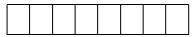
(b) Reply

The alarm No. corresponding to the data No. is provided.

For example, "0032" means AL.32 and "00FF" means AL._ (no alarm).

(2) Alarm occurrence time read

Read the occurrence time of alarm which occurred in the past.


The alarm occurrence time corresponding to the data No. is provided in terms of the total time beginning with operation start, with the minute unit omitted.

(a) Transmission

Send command [3][3] and data No. [2][0] to [2][5].

Refer to Section 14.11.1.

(b) Reply

The alarm occurrence time is transferred in decimal.
 Hexadecimal must be converted into decimal.

For example, data "01F5" means that the alarm occurred in 501 hours after start of operation.

(3) Alarm history clear

Erase the alarm history.

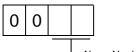
Send command [8][2] and data No. [2][0].

Command	Data No.	Data
[8][2]	[2][0]	1EA5

14.12.10 Current alarm

(1) Current alarm read

Read the alarm No. which is occurring currently.


(a) Transmission

Send command [0][2] and data No. [0][0].

Command	Data No.
[0][2]	[0][0]

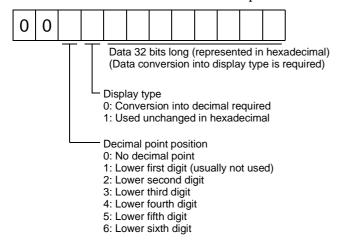
(b) Reply

The slave station sends back the alarm currently occurring.

- Alarm No. is transferred in decimal.

For example, "0032" means AL.32 and "00FF" means AL._ (no alarm).

(2) Read of the status display at alarm occurrence


Read the status display data at alarm occurrence. When the data No. corresponding to the status display item is transmitted, the data value and data processing information are sent back.

(a) Transmission

Send command [3][5] and any of data No. [8][0] to [8][E] corresponding to the status display item to be read. Refer to Section 14.11.1.

(b) Reply

The slave station sends back the requested status display data at alarm occurrence.

(3) Current alarm clear

As by the entry of the RES signal, reset the servo amplifier alarm to make the servo amplifier ready to operate. After removing the cause of the alarm, reset the alarm with no command entered.

Command	Data No.	Data
[8][2]	[0][0]	1EA5

14.12.11 Other commands

(1) Servo motor end pulse unit absolute position

Read the absolute position in the servo motor end pulse unit.

Note that overflow will occur in the position of 16384 or more revolutions from the home position.

(a) Transmission

Send command [0][2] and data No. [9][0].

Command	Data No.
[0][2]	[9][0]

(b)	Rej	ply

The slave station sends back the requested servo motor end pulses.

Absolute value is sent back in hexadecimal in the servo motor end pulse unit. (Must be converted into decimal)

For example, data "000186A0" is 100000 [pulse] in the motor end pulse unit.

(2) Command unit absolute position

Read the absolute position in the command unit.

(a) Transmission

Send command [0][2] and data No. [9][1].

Command	Data No.
[0][2]	[9][1]

(b) Reply

The slave station sends back the requested command pulses.

Absolute value is sent back in hexadecimal in the command unit.

(Must be converted into decimal)

For example, data "000186A0" is 100000 [pulse] in the command unit.

(3) Software version

Reads the software version of the servo amplifier.


(a) Transmission

Send command [0][2] and data No.[7][0].

Command	Data No.
[0][2]	[7][0]

(b) Reply

The slave station returns the software version requested.

Space

Software version (15 digits)

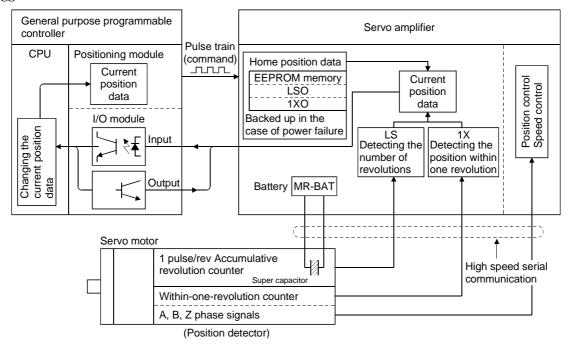
MEMO	

15. ABSOLUTE POSITION DETECTION SYSTEM

CAUTION

• If an absolute position erase alarm (AL.25) has occurred, always perform home position setting again. Not doing so can cause runaway.

15.1 Outline


15.1.1 Features

For normal operation, as shown below, the encoder consists of a detector designed to detect a position within one revolution and a cumulative revolution counter designed to detect the number of revolutions.

The absolute position detection system always detects the absolute position of the machine and keeps it battery-backed, independently of whether the general-purpose programming controller power is on or off. Therefore, once the home position is defined at the time of machine installation, home position return is not needed when power is switched on thereafter.

If a power failure or a fault occurs, restoration is easy.

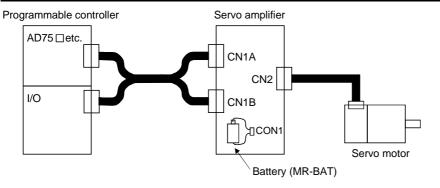
Also, the absolute position data, which is battery-backed by the super capacitor in the encoder, can be retained within the specified period (cumulative revolution counter value retaining time) if the cable is unplugged or broken.

15.1.2 Restrictions

The absolute position detection system cannot be configured under the following conditions. Test operation cannot be performed in the absolute position detection system, either. To perform test operation, choose incremental in parameter No.1.

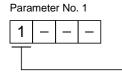
- (1) Speed control mode, torque control mode.
- (2) Control switch-over mode (position/speed, speed/torque, torque/speed).
- (3) Stroke-less coordinate system, e.g. rotary shaft, infinitely long positioning.
- (4) Changing of electronic gear after home position setting.
- (5) Use of alarm code output.

15.2 Specifications


(1) Specification list

Item	Description
System	Electronic battery backup system
Battery	1 piece of lithium battery (primary battery, nominal + 3.6V)
Battery	Type: MR-BAT or A6BAT
Maximum revolution range	Home position \pm 32767 rev.
(Note 1) Maximum speed at power failure	500r/min
(Note 2) Battery backup time	Approx. 10,000 hours (battery life with power off)
(Note 3) Data holding time during battery replacement	2 hours at delivery, 1 hour in 5 years after delivery
Battery storage period	5 years from date of manufacture

- Note: 1. Maximum speed available when the shaft is rotated by external force at the time of power failure or the like.
 - 2. Time to hold data by a battery with power off. It is recommended to replace the battery in three years independently of whether power is kept on or off.
 - 3. Period during which data can be held by the super capacitor in the encoder after power-off, with the battery voltage low or the battery removed, or during which data can be held with the encoder cable disconnected.
 - Battery replacement should be finished within this period.


(2) Configuration

Positioning module	I/O module	
AD71 • AD71S2 • AD71S7		
A1SD71S2 • A1SD71S7	AX40 • 41 • 42	
AD75□	AY40 • 41 • 42	
A1SD75□		
FX-1PG • FX-1GM	FX2-32MT	
FX(E)-20GM • FX-10GM	FAZ-32M1	

(3) Parameter setting

Set " $1 \square \square \square$ " in parameter No.1 to make the absolute position detection system valid.

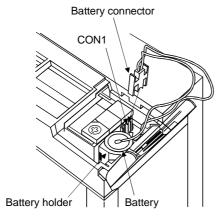
Selection of absolute position detection system

0: Incremental system

1: Absolute position detection system

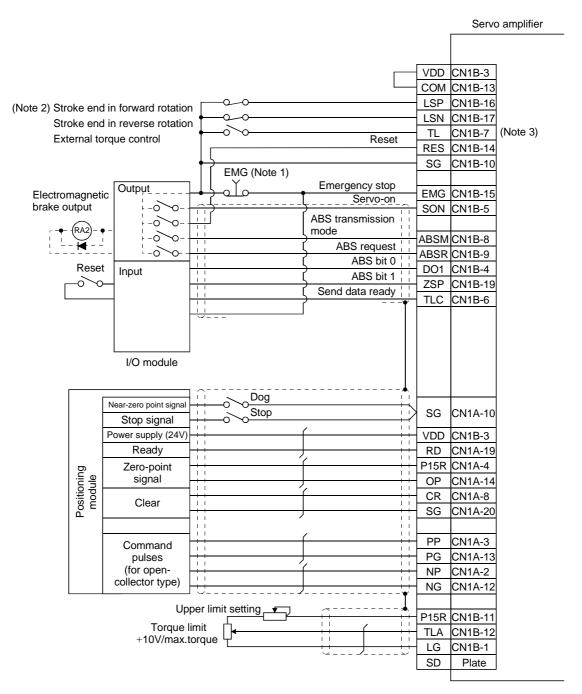
15.3 Battery installation procedure

• Before starting battery installation procedure, make sure that the charge lamp is off more than 10 minutes after power-off. Then, confirm that the voltage is safe in the tester or the like. Otherwise, you may get an electric shock.


POINT

The internal circuits of the servo amplifier may be damaged by static electricity. Always take the following precautions:

- Ground human body and work bench.
- Do not touch the conductive areas, such as connector pins and electrical parts, directly by hand.
- (1) Open the operation window. (When the model used is the MR-J2S-200A MR-J2S-350A or more, also remove the front cover.)
- (2) Install the battery in the battery holder.
- (3) Install the battery connector into CON1 until it clicks.



For MR-J2S-100A or less

For MR-J2S-500A • MR-J2S-700A

15.4 Standard connection diagram

Note: 1. Always install the emergency stop switch.

- 2. For operation, always short the forward/reverse rotation stroke end (LSN/LSP) with SG.
- 3. When using the torque limit signal (TL), set " $\Box\Box\Box$ 4" in parameter No.46 to assign TL to pin CN1B-7.

15.5 Signal explanation

When the absolute position data is transferred, the signals of connector CN1 change as described in this section. They return to the previous status on completion of data transfer. The other signals are as described in Section 3.3.2.

For the I/O interfaces (symbols in the I/O Category column in the table), refer to Section 3.6.

Signal name	Code	Pin No.	Function/Application	I/O category	Control mode
ABS transfer mode	ABSM	(Note) CN1B-8	While ABSM is shorted by connection to SG, the servo amplifier is in the ABS transfer mode, and the functions of ZSP, TLC, and D01 are as indicated in this table.	DI-1	
ABS request	ABSR	(Note) CN1B-9	ABSR-SG are shorted to request the ABS data in the ABS transfer mode.	DI-1	
ABS bit 0	D01	CN1B-4	Indicates the lower bit of the ABS data (2 bits) which is sent from the servo to the programmable controller in the ABS transfer mode. If there is a signal, the circuit between D01 and SG is closed.	DO-1	P
ABS bit 1	ZSP	CN1B-19	Indicates the upper bit of the ABS data (2 bits) which is sent from the servo to the programmable controller in the ABS transfer mode. If there is a signal, the circuit between ZSP and SG is closed.	DO-1	(Position control)
Send data ready	TLC	CN1B-6	Indicates that the data to be sent is being prepared in the ABS transfer mode. At the completion for the ready state, the circuit between TLC and SG is closed.	DO-1	
Home position setting	CR	CN1A-8	When CR-SG are shorted, the position control counter is cleared and the home position data is stored into the non-volatile memory (backup memory).	DI-1	

Note: When "Used in absolute position detection system" is selected in parameter No. 1, pin CN1B-8 acts as the ABS transfer mode (ABSM) signal and pin CN1B-9 as the ABS request (ABSR) signal. They do not return to the original signals if data transfer ends.

15.6 Startup procedure

(1) Battery installation.

Refer to Section 15.3 installation of absolute position backup battery.

(2) Parameter setting

Set "1 □□□"in parameter No. 1 of the servo amplifier and switch power off, then on.

error occurs, refer to Section 15.10 or Chapter 10 and take corrective action.

(3) Resetting of absolute position erase alarm (AL.25)

After connecting the encoder cable, the absolute position erase alarm (AL.25) occurs at first power-on. Leave the alarm as it is for a few minutes, then switch power off, then on to reset the alarm.

(4) Confirmation of absolute position data transfer

When the servo-on signal is turned on, the absolute position data is transferred to the programmable controller. When the ABS data is transferred properly:

- (a) The ready output (RD) turns on.
- (b) The programmable controller/ABS data ready contact (M3 for A1SD71, M99 for 1PG) turns on.
- (c) The servo configuration software ABS data display window (refer to Section 15.9) and programmable controller side ABS data registers (D3, D4 for A1SD71, D106, D107 for 1PG) show the same value (at the home position address of 0).

 If any warning such as ABS time-out warning (AL.E5) or programmable controller side transfer

(5) Home position setting

The home position must be set if:

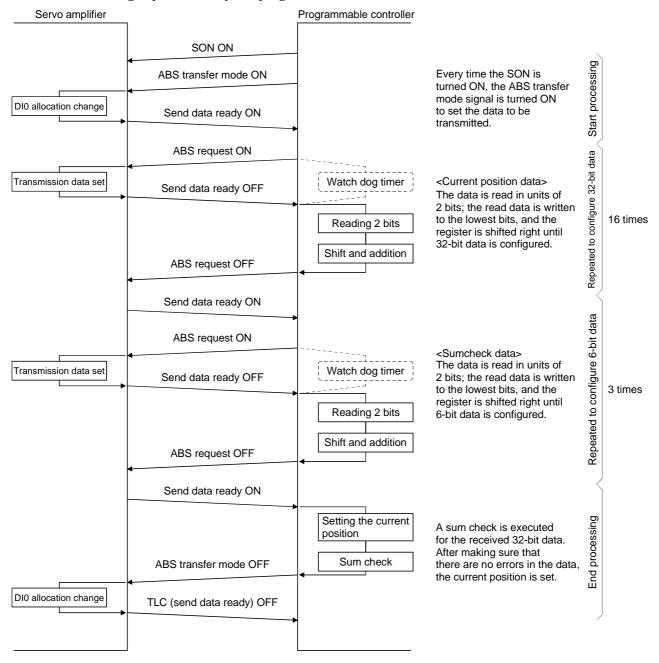
- (a) System setup is performed;
- (b) The servo amplifier has been changed;
- (c) The servo motor has been changed; or
- (d) The absolute position erase alarm (AL.25) occurred.

In the absolute position system, the absolute position coordinates are made up by making home position setting at the time of system setup.

The motor shaft may misoperate if positioning operation is performed without home position setting. Always make home position setting before starting operation.

For the home position setting method and types, refer to Section 15.7.3.

15.7 Absolute position data transfer protocol

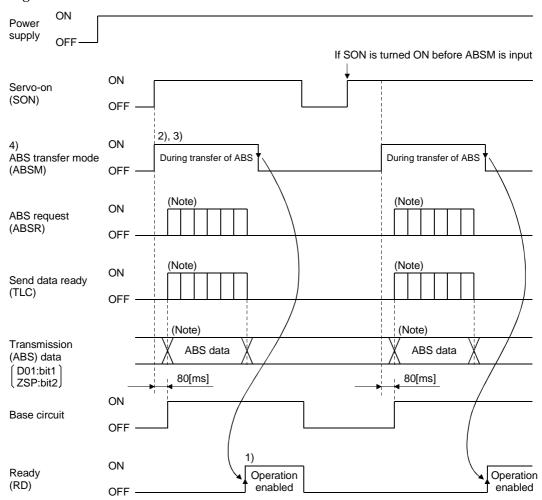

POINT

• After switching on the ABS transfer mode (ABSM), turn on the servo-on signal (SON). When the ABS transfer mode is off, turning on the servo-on signal (SON) does not switch on the base circuit.

15.7.1 Data transfer procedure

Each time the SON signal is turned ON (when the power is switched ON for example), the programmable controller reads the position data (present position) of the servo amplifier.

Time-out monitoring is performed by the programmable controller.

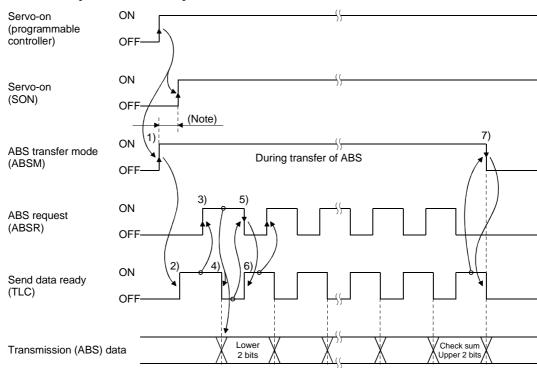


15.7.2 Transfer method

The sequence in which the base circuit is turned ON (servo-on) when it is in the OFF state due to the servo-on signal (SON) going OFF, an emergency stop, or alarm, is explained below. In the absolute position detection system, every time the servo-on (SON) signal is turned on, the ABS transfer mode (ABSM) signal should always be turned on to read the current position in the servo amplifier to the controller. The servo amplifier transmits to the controller the current position latched when the ABS transfer mode (ABSM) signal switches from OFF to ON. At the same time, this data is set as a position command value inside the servo amplifier. Unless the ABS transfer mode signal (ABSM) is turned ON, the base circuit cannot be turned ON.

(1) At power-on

(a) Timing chart


Note: For details, refer to (1) (b) in this section.

- 1) The ready signal (RD) is turned ON when the ABS transfer mode signal (ABSM) is turned OFF after transmission of the ABS data.
 - While the ready signal (RD) is ON, the ABS transfer mode signal (ABSM) input is not accepted.
- 2) Even if the servo-on (SON) signal is turned ON before the ABS transfer mode signal (ABSM) is turned ON, the base circuit is not turned ON until the ABS transfer mode signal (ABSM) is turned ON.
 - If a servo alarm has occurred, the ABS transfer mode signal (ABSM) is not received. The ABS transfer mode signal (ABSM) allows data transmission even while a servo warning is occurring.
- 3) If the ABS transfer mode signal (ABSM) is turned OFF during the ABS transfer mode, the ABS transfer mode is interrupted and the time-out error (AL.E5) occurs.
- 4) The functions of output signals such as ZSP, TLC, D01, and INP change depending on the ON/OFF state of the ABS transfer mode signal (ABSM).

Note that if the ABS transfer mode signal (ABSM) is turned ON for a purpose other than ABS data transmission, the output signals will be assigned the functions of ABS data transmission.

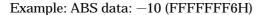
Symbol Pin No.		Output signal		
		ABS transfer mode (ABSM): OFF	ABS transfer mode (ABSM): ON	
(Note) D01	CN1B-4	Positioning completion	ABS data bit 0	
ZSP	CN1B-19	Zero speed	ABS data bit 1	
TLC	CN1B-6	During torque limit control	Send data ready	
(Note) INP	CN1A-18	Positioning completion	ABS data bit 0	

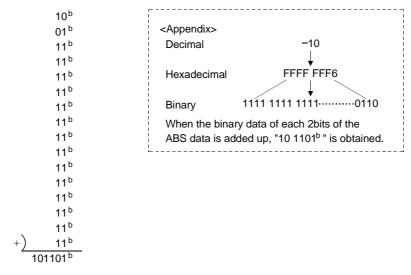
Note: CN1B-4 and CN1A-18 output the same signals. (To enter the positioning completion signal into INPS of the AD75, connect CN1A-18.)

(b) Detailed description of absolute position data transfer

Note: If the servo-on signal (SON) is not turned ON within 1 second after the ABS transfer mode signal (ABSM) is turned ON, an SON time-out warning (AL.EA) occurs. This warning, however, does not interrupt data transmission. It is automatically cleared when the servo-on (SON) signal is turned ON.

- 1) The programmable controller turns ON the ABS transfer mode signal (ABSM) and servo-on signals (SON) at the leading edge of the internal servo-on signal.
- 2) In response to the ABS transfer mode signal, the servo detects and calculates the absolute position and turns ON the send data ready (TLC) signal to notify the programmable controller that the servo is ready for data transmission.
- 3) After acknowledging that the ready to send (TLC) signal has been turned ON, the programmable controller turns ABS request (ABSR) ON.
- 4) In response to ABS request (ABSR), the servo outputs the lower 2 bits of the ABS data and the ready to send (TLC) signal in the OFF state.
- 5) After acknowledging that the ready to send (TLC) signal has been turned OFF, which implies that 2 bits of the ABS data have been transmitted, the programmable controller reads the lower 2 bits of the ABS data and then turns OFF the ABS request (ABSR).
- 6) The servo turns ON the ready to send (TLC) so that it can respond to the next request. Steps 3) to 6) are repeated until 32-bit data and the 6-bit check sum have been transmitted.
- 7) After receiving of the check sum, the programmable controller turns the ABS transfer mode signal (ABSM) OFF.
 - If the ABS transfer mode signal (ABSM) is turned OFF during data transmission, the ABS transfer mode is interrupted.


(c) Checksum

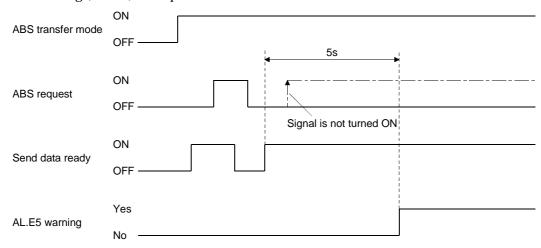

The check sum is the code which is used by the programmable controller to check for errors in the received ABS data. The 6-bit check sum is transmitted following the 32-bit ABS data.

At the programmable controller, calculate the sum of the received ABS data using the ladder program and compare it with the check sum code sent from the servo.

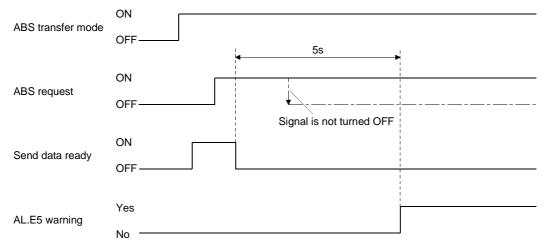
The method of calculating the check sum is shown. Every time the programmable controller receives 2 bits of ABS data, it adds the data to obtain the sum of the received data. The check sum is 6-bit data.

Negative data is available for the FX-1PG and unavailable for the A1SD71.

Therefore, the check sum of "-10" (ABS data) is " $2D^{\rm b}$ "

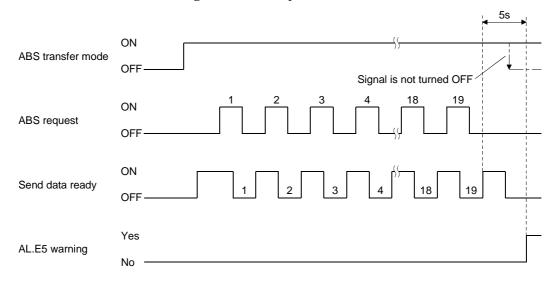

(2) Transmission error

(a) Time-out warning(AL.E5)


In the ABS transfer mode, the time-out processing shown below is executed at the servo. If a time-out error occurs, an ABS time-out warning (AL.E5) is output.

The ABS time-out warning (AL.E5) is cleared when the ABS transfer mode (ABSM) changes from OFF to ON.

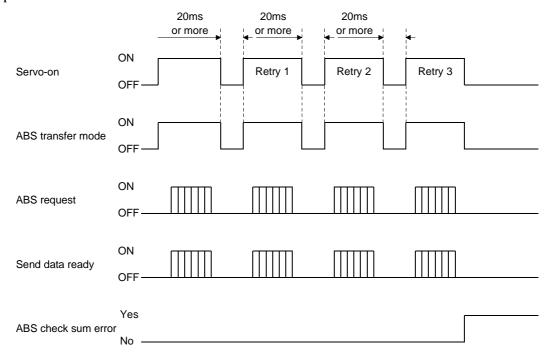
1) ABS request OFF-time time-out check (applied to 32-bit ABS data in 2-bit units + check sum) If the ABS request signal is not turned ON by the programmable controller within 5s after the send data ready signal is turned ON, this is regarded as a transmission error and the ABS time-out warning (AL.E5) is output.



2) ABS request ON-time time-out check (applied to 32-bit ABS data in 2-bit units + check sum) If the ABS request signal is not turned OFF by the programmable controller within 5s after the send data ready signal is turned OFF, this is regarded as the transmission error and the ABS time-out warning (AL.E5) is output.

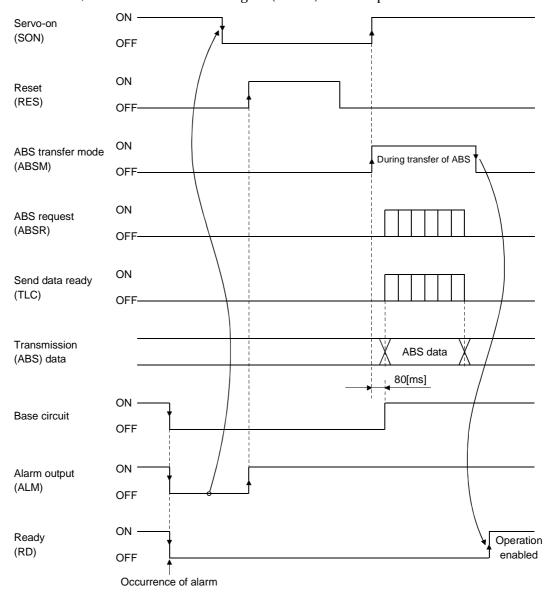
3) ABS transfer mode finish-time time-out check

If the ABS transfer mode signal is not turned OFF within 5s after the last ready to send signal (19th signal for ABS data transmission) is turned ON, it is regarded as the transmission error and the ABS time-out warning (AL.E5) is output.


(b) Check sum error

If the check sum error occurs, the programmable controller should retry transmission of the ABS data.

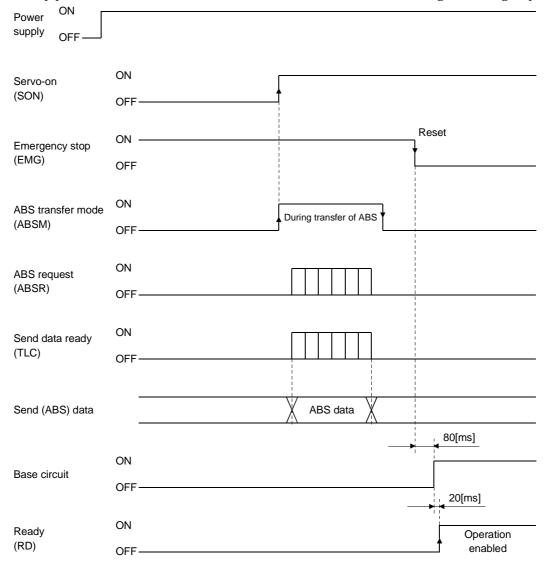
Using the ladder check program, turn OFF the ABS transfer mode (ABSM) and servo-on (SON) signals once. Turn them ON again after an OFF time of longer than 20 ms.


If the ABS data transmission fails to end normally even after retry, regard this situation as an ABS check sum error and execute error processing.

The start command should be interlocked with the ABS data ready signal to disable positioning operation when an check sum error occurs.

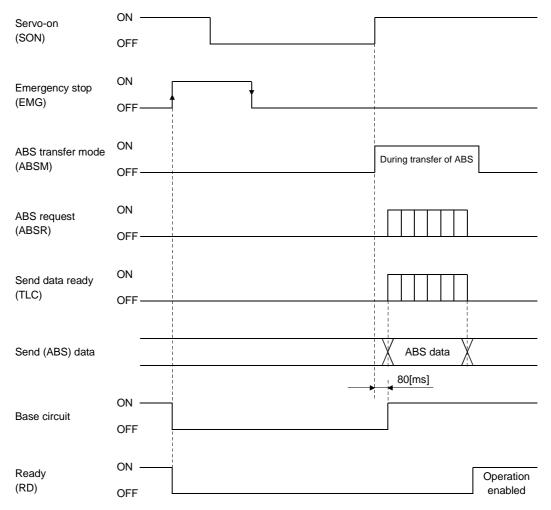
(3) At the time of alarm reset

If an alarm occurs, turn OFF the servo-on (SON) signal by detecting the alarm output (ALM). If an alarm has occurred, the ABS transfer mode signal (ABSM) cannot be accepted. In the reset state, the ABS transfer mode signal (ABSM) can be input.


(4) At the time of emergency stop reset

(a) If the power is switched ON in the emergency stop state

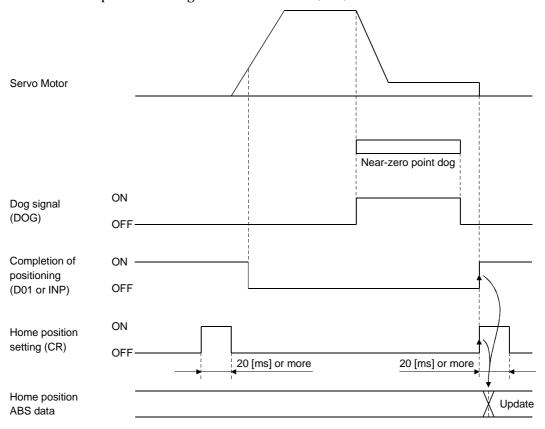
The emergency stop state can be reset while the ABS data is being transferred.


If the emergency stop state is reset while the ABS data is transmitted, the base circuit is turned ON 80[ms] after resetting. If the ABS transfer mode signal (ABSM) is OFF when the base circuit is turned ON, the ready signal (RD) is turned ON 20[ms] after the turning ON of the base circuit. If the ABS transfer mode signal (ABSM) is ON when the base circuit is turned ON, it is turned OFF and then the ready signal (RD) is turned ON. The ABS data can be transmitted after the emergency stop state is reset.

The current position in the servo amplifier is updated even during an emergency stop. When servo-on (SON) and ABS transfer mode (ABSM) are turned ON during an emergency stop as shown below, the servo amplifier transmits to the controller the current position latched when the ABS transfer mode (ABSM) switches from OFF to ON, and at the same time, the servo amplifier sets this data as a position command value. However, since the base circuit is OFF during an emergency stop, the servo-lock status is not encountered. Therefore, if the servo motor is rotated by external force or the like after the ABS transfer mode (ABSM) is turned ON, this travel is accumulated in the servo amplifier as droop pulses. If the emergency stop is cleared in this status, the base circuit turns ON and the motor returns to the original position rapidly to compensate for the droop pulses. To avoid this status, reread the ABS data before clearing the emergency stop.

(b) If emergency stop is activated during servo-on

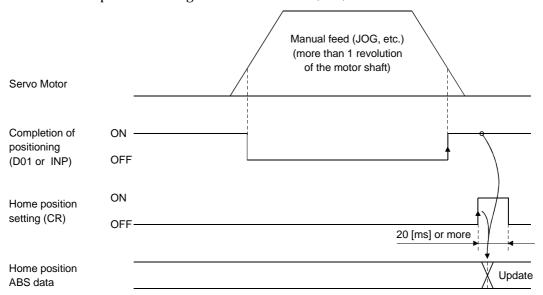
The ABS transfer mode signal (ABSM) is permissible while in the emergency stop state. In this case, the base circuit and the ready signal (RD) are turned ON after the emergency stop state is reset.



15.7.3 Home position setting

(1) Dog type home position return

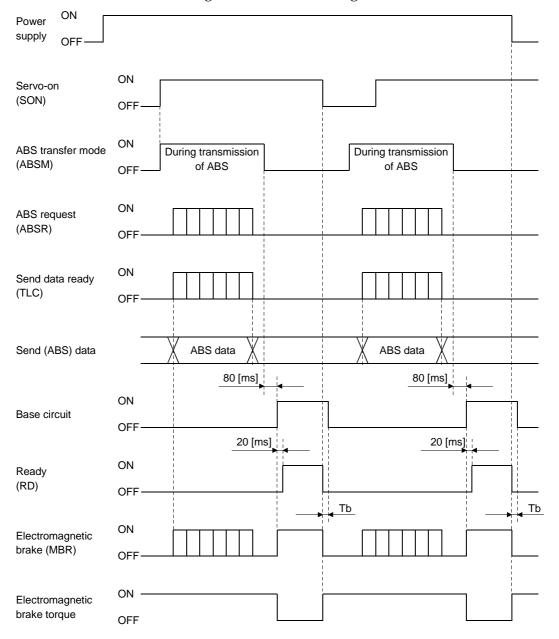
Preset a home position return creep speed at which the machine will not be given impact. On detection of a zero pulse, the home position setting signal (CR) is turned from off to on. At the same time, the servo amplifier clears the droop pulses, comes to a sudden stop, and stores the stop position into the non-volatile memory as the home position ABS data.


The home position setting signal should be turned on after it has been confirmed that the in-position (D01 or INP) is on. If this condition is not satisfied, the home position setting warning (AL.96) will occur, but that warning will be reset automatically by making home position return correctly. The number of home position setting times is limited to 1,000,000 times.

(2) Data set type home position return

Move the machine to the position where the home position is to be set by performing manual operation such as jog operation to turn the motor shaft more than one revolution. When the home position setting signal (CR) is on for longer than 20ms, the stop position is stored into the non-volatile memory as the home position ABS data.

The home position setting signal should be turned on after it has been confirmed that the in-position (D01 or INP) is on. If this condition is not satisfied, the home position setting warning (AL.96) will occur, but that warning will be reset automatically by making home position return correctly. The number of home position setting times is limited to 1,000,000 times.



15.7.4 Use of servo motor with electromagnetic brake

The timing charts at power on/off and servo-on (SON) on/off are given below.

Preset " \square 1 \square " in parameter No. 1 to make the electromagnetic brake interlock signal (MBR) usable. When the ABS transfer mode is ON, the electromagnetic brake interlock (MBR) is used as the ABS data bit 1.

Hence, make up an external sequence which will cause the electromagnetic brake torque to be generated by the ABS mode (ABSM) and electromagnetic brake interlock signals.

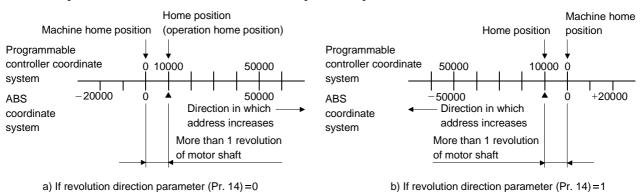
15.7.5 How to process the absolute position data at detection of stroke end

The servo amplifier stops the acceptance of the command pulse when stroke end (LSP \cdot LSN) is detected, clears the droop pulses to 0 at the same time, and stops the servo motor rapidly.

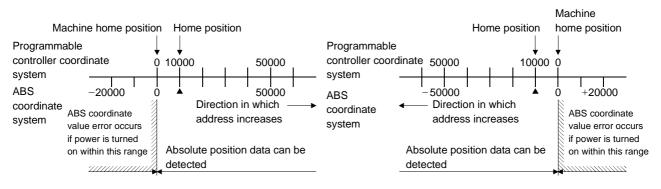
At this time, the programmable controller keeps outputting the command pulse. Since this causes a discrepancy between the absolute position data of the servo amplifier and the programmable controller, a difference will occur between the position data of the servo amplifier and that of the programmable controller.

To prevent this difference in position data from occurring, do as described below. When the servo amplifier has detected the stroke end, perform jog operation or the like to clear the stroke end. After that, switch the servo-on signal off once, then on again, or switch the power off once, then on again. This causes the absolute position data of the servo amplifier to be transferred to the programmable controller, restoring the normal data.

15.8 Examples of use


15.8.1 MELSEC-A1S (A1SD71)

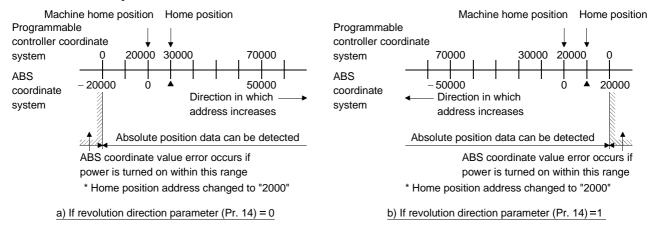
(1) Instructions


The absolute coordinate system (programmable controller coordinate system) of the A1SD71 (AD71) only covers the range in which the address increases (positive coordinate values) on moving away from the machine home position (the position reached in the home position return operation). Therefore, if the motor enters the range where the coordinate value is negative due to the load torque or a fall on a vertical axis when the power is turned ON/OFF at a point near the machine home position, the system fails to detect the absolute position. To prevent this problem, it is necessary to set the home position (operation home position) for positioning in addition to the machine home position.

(a) The home position should be set in the direction in which the position address of the programmable controller coordinate system increases on moving away from machine home position, as illustrated below. Note that the home position for positioning must be more than one revolution of the servo motor shaft from the machine home position.

If the address of the machine home position is changed to any value other than "0", the home position should be set in the direction in which the position address increases on moving away from the machine home position (machine home position after changing the home position address) and at a point removed from the machine home position by more than one revolution of the motor shaft.

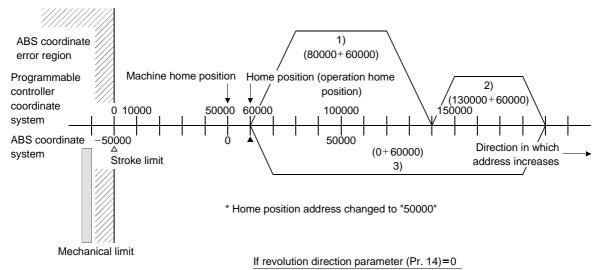
(b) In the range where the address decreases on moving away from the machine home position, do not turn the power supply to the programmable controller or the servo amplifier, the servo-on pushbutton switch, or the PC-RESET switch, ON/OFF. If any of these operations are attempted, the ABS coordinate error (Y4B) is output since the absolute position cannot be detected.



a) If revolution direction parameter (Pr. 14)=0

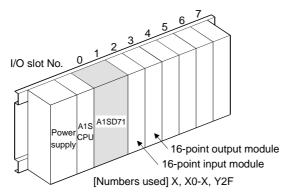
b) If revolution direction parameter (Pr. 14)=1

If the address of the machine home position is changed to any coordinate value other than "0", the programmable controller coordinate system will be as illustrated below.


The power should be turned ON/OFF in the range in which the address increases on moving away from the home position.

(c) In a positioning program, the address of the positioning point should be determined by adding the home position address to the target position address.

Example) After home position return, execute positioning at 1) to 3).

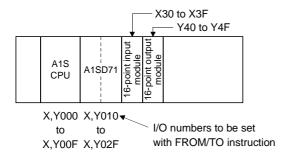

- 1) Positioning at position address 80000 (PC coordinate 140000)
- 2) Positioning at position address 130000 (PC coordinate 190000)
- 3) Positioning at position address 0 (PC coordinate 60000)

(d) Slot arrangement

The sequence programs presented in this section show I/O numbers (X, Y) assuming the arrangement of modules on the main base unit is as illustrated below. A1SD71 is mounted at I/O slots 0 and 1, a 16-point input module at slot 2, and 16-point output module at slot 3. If the actual arrangement of the modules differs from this arrangement, change the X and Y numbers accordingly.

The numbers of the devices (M, D, T, etc.) used in the program can be changed as required.

Example arrangement of modules

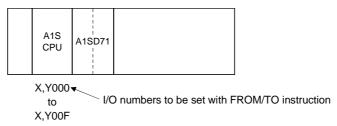

(e) Points

1) The A1SD71 has 48 I/O points and occupies 2 slots. For I/O allocation using the GPP function, follow the instructions given below.

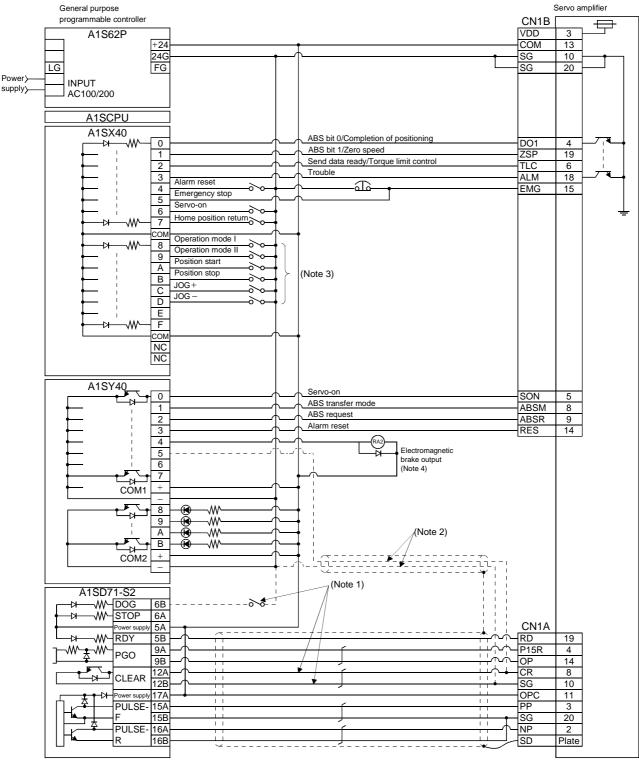
First slot: Vacant slot 16 points

Second slot: Special function module 32 points

2) To execute the FROM/TO instruction for the A1SD71, use the head I/O number of the second slot.



Note: The program example given in (3) in this section is for 1-axis control. Slot allocations are as illustrated to the left. To use the system for 2-axis control, increase the number of I/O points.


Therefore, the I/O number to be set with the FROM/TO instruction is head I/O number allocated to the A1SD71 + 010H.

3) By setting "0 point of vacant slot" for the first slot of the A1SD71 in the "I/O allocation" of the GPP function, the 16 points in the first slot can be saved.

In this case, the I/O number to be set with the FROM/TO instruction is the same number as the head I/O number allocated to the A1SD71.

(2) Connection diagram

Note: 1. To be connected for dog type home position setting. The connection in Note 2 is not required.

- 2. To be connected for data set type home position setting. The connection in Note 1 is not required.
- 3. This circuit is for reference only.
- 4. The electromagnetic brake output should be controlled by connecting the programmable controller output to a relay.

(3) Sequence program example

(a) Conditions

This sample program is an ABS sequence program example for a single axis (X axis).

To transmit the ABS data using the OFF-to-ON change of the servo-on signal as the trigger.

- 1) When the servo-ON signal and the GND of the power supply are shorted, the ABS data is transmitted when the power to the servo amplifier power is turned ON, or at the leading edge of the RUN signal after a PC reset operation (PC-RESET). The ABS data is also transmitted when an alarm is reset, or when the emergency stop state is reset.
- 2) If a check sum discrepancy is detected in the transmitted data, ABS data transmission is retried up to three times. If the check sum discrepancy is still detected after retrying, the ABS check sum error is generated (Y4A ON).
- 3) The following time periods are measured and if the ON/OFF state does not change within the specified time, the ABS communication error is generated (Y4A ON).
 - ON period of ABS transfer mode (Y41)
 - ON period of ABS request (Y42)
 - OFF period of ready to send ABS data (X32).
- 4) If the relationship between the polarity (±) of the received ABS data and the setting value for parameter No. 14 (rotating direction) of A1SD71 (AD71) involves negative coordinate values, which cannot be handled by the A1SD71 (AD71), the ABS coordinate error is generated (Y4B ON).

(b) Device list

	X input contact	Y output contact						
X30	ABS bit 0 / completion of positioning	Y40	Servo-on					
X31	ABS bit 1 / zero speed	Y41	ABS transfer mode					
X32	Send ABS data ready / torque limit control	Y42	ABS request					
X33	Servo alarm	Y43	Alarm reset					
X34	Error reset	X44 (Note 2)	Electromagnetic brake output					
X35	Servo emergency stop	Y45 (Note 1)	Clear					
X36	Servo-on	Y48	Servo alarm					
X37	Home position return start	Y49	ABS communication error					
X38	Operation mode I	Y4A	ABS check sum error					
X39	Operation mode II	Y4B	ABS coordinate error					
	D register		M contact					
D0	ABS data transmission counter	M0	ABS data transmission start					
D1	Check sum transmission counter	M1	Sum check completion					
D2	Check sum addition counter	M2	Sum check discrepancy					
D3	ABS data: Lower 16 bits	M3	ABS data ready					
D4	ABS data: Upper 16 bits	M4	Transmission data read enabled					
D5	ABS data 2-bit receiving buffer	M5	Check sum 2 bits read completion					
D6	Check data in case of check sum error	M6	ABS 2 bits read completion					
D7	Retry frequency	M7	ABS 2 bits request					
D8	Forward rotation direction	M8	Servo-on request					
D9	Home position address: Lower 16 bits	M9	Servo alarm					
D10	Home position address: Upper 16 bits	M10	ABS data transmission retry start pulse					
D100	Received shift data: Lower 16 bits	M11	Retry flag setting					
D101	Received shift data: Upper 16 bits	M12	Retry flag reset					
	T timer	M13	PLS processing command					
T0	ABS transfer mode timer	M20 (Note 1)	Clear signal ON timer request					
T1	ABS request response timer	M21 (Note 2)	Data set type home position return request					
T2	Retry wait timer		C counter					
T3	Ready to send response timer	C0	ABS data receive frequency counter					
T10 (Note 1)	Clear signal ON timer	C1	Check sum receive frequency counter					
T200	Transmitted data read 10ms delay timer	C2	Retry counter					

Note 1: Necessary when data set type home position return is executed.

^{2:} Necessary in the event of electromagnetic brake output.

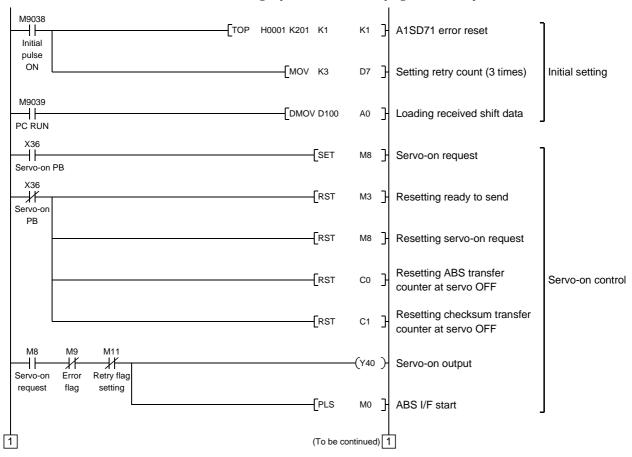
(c) ABS data transfer program for X axis

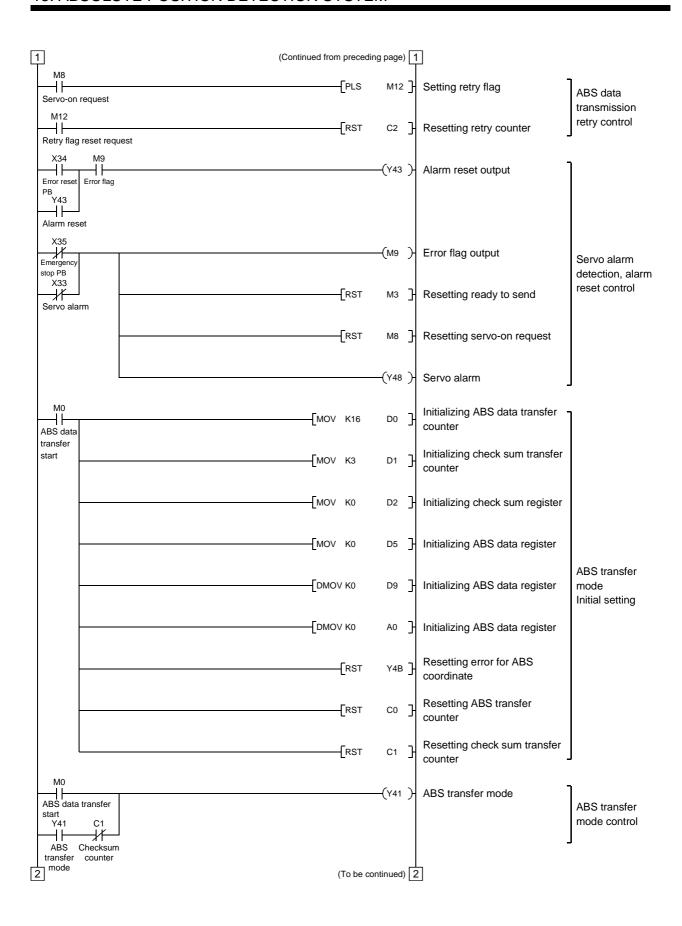
This sequence program example assumes the following conditions:

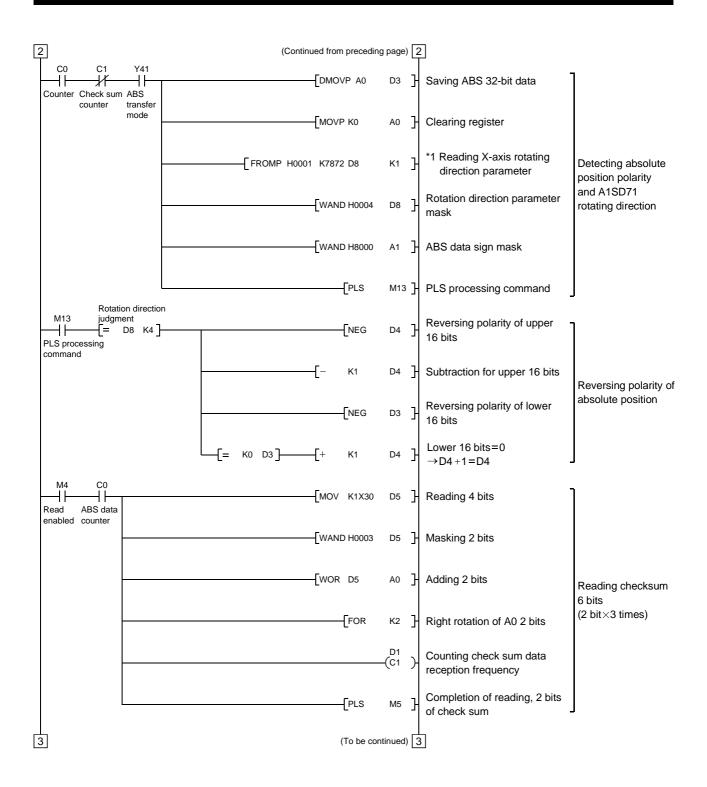
■ Parameters of the A1SD71-S2 (AD71) positioning module

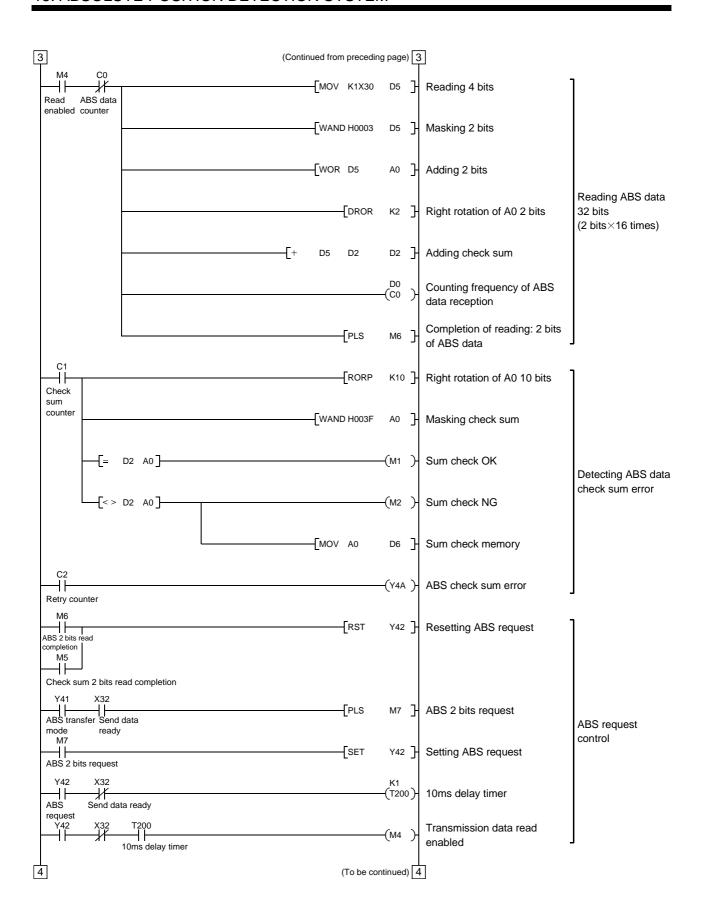
1) Unit setting : 3 = pulse (PLS)

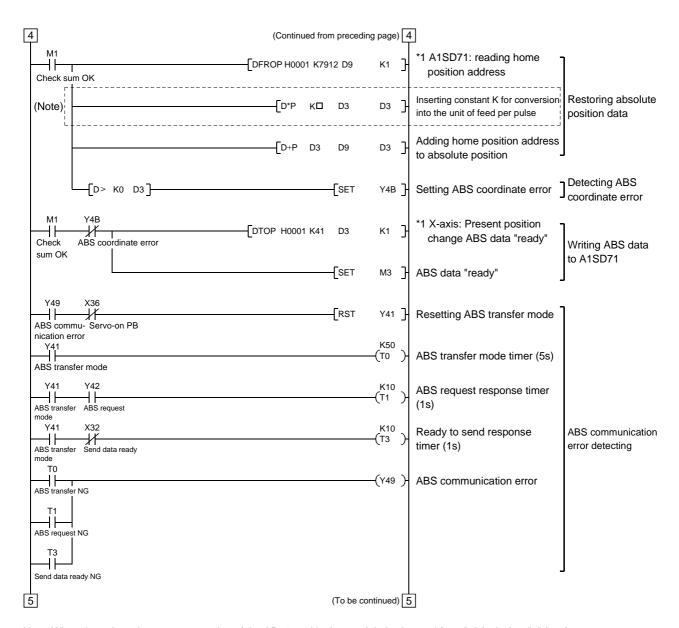
2) Travel per pulse : 1 = 1 pulse

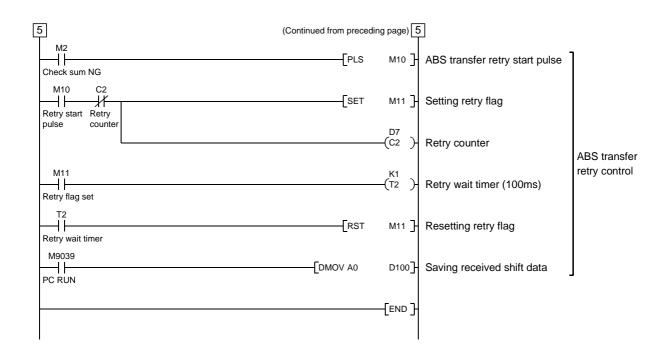

To select the unit other than the pulse, conversion into the unit of the feed command value per pulse is required. Hence, add the following program to the area marked Note in the sequence program.


<Additional program>


——[D*P K □ □ D3 D3]	Item	mm				inch			pulse		
[0 1 K 0 0 0 0 0]	Unit setting	0				1			3		
	Travel per pulse	0.1 to	1.0 to	10.0	0.00001	0.0001	0.001	0.00001	0.0001	0.001	
					to	to	to	to	to	to	
	Unit of travel	μm/PLS			inch/PLS			degree/PLS			PLS
	Constant K for										
	conversion into	1 to	10 to	100	1 to	10 to	100	1 to	10 to	100	None
	unit of travel										


Reference


- For 1µm/PLS, set constant K to 10
- For 5μm/PLS, set constant K to 50
- When the unit setting is pulse, the additional program is not required.



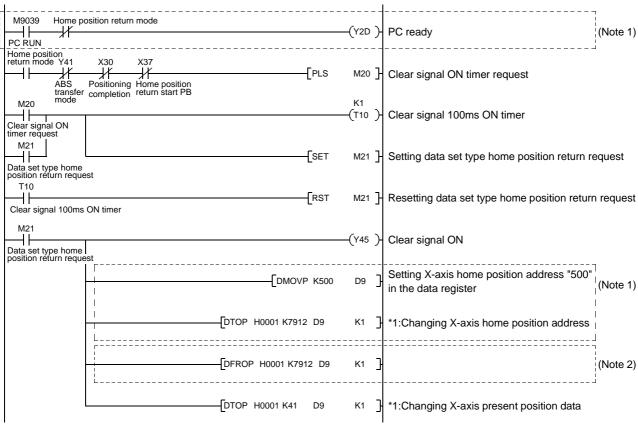
Note: When the unit setting parameter value of the AD71 positioning module is changed from "3" (pulse) to "0" (mm), the unit is $\times 0.1 \mu m$ for the input value. To change the unit to $\times 1 \mu m$, and this program to multiple the feed value by 10.

POINT

• When absolute position data is received at power ON, for example, if a negative coordinate position which cannot be handled by the A1SD71 is detected, the ABS coordinate error (Y4B ON) is generated. If this error is generated, move the axis into the positive coordinate zone in JOG operation. Then, turn OFF the servo-on pushbutton switch and turn it ON again.

(d) X-axis control program

This precludes execution of the X-axis start program while M3 (ready to send the ABS data) is OFF.


(e) Dog type home position return

For an example of a program for the dog type home position return operation, refer to the home position return program presented in the User's Manual for A1SD71.

(f) Data set type home position return

After jogging the machine to the position where the home position (e.g. 500) is to be set, choose the home position return mode set the home position with the home position return start (PB ON). After switching power on, rotate the servo motor more than 1 revolution before starting home position return.

Do not turn ON the clear signal (Y45) for an operation other than home position return. Turning it ON in other circumstances will cause position shift.

Note 1: If data of the home position address parameter is not written by using an A6GPP programming tol, etc. before starting a program for data set type home position return, the circuits indicated by Note 1 are necessary and the circuit indicated by Note 2 is not necessary.

^{2:} Contrary to Note 1 above, if the home position address is written in the home position address parameter. the circuit indicated by Note 3 is necessary and the circuits indicated by Note 1 are not necessary.

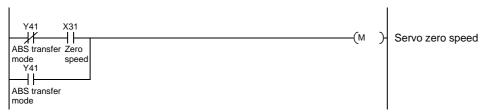
(g) Electromagnetic brake output

During ABS data transfer (for several seconds after the servo-on signal is turned on), the servo motor must be at a stop.

Set " $1 \square 1 \square$ "in parameter No. 1 of the servo amplifier to choose the electromagnetic brake interlock signal.

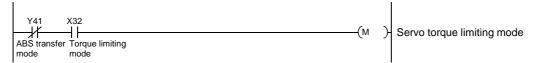
(h) Positioning completion

To create the status information for servo positioning completion.


During ABS data transfer (for several seconds after the servo-on signal is turned on), the servo motor must be at a stop.

(i) Zero speed

To create the status information for servo zero speed


During ABS data transfer (for several seconds after the servo-on signal is turned on), the servo motor must be at a stop.

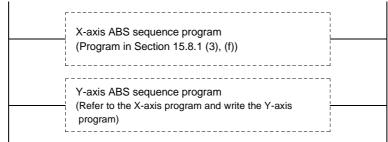
(j) Torque limiting

To create the status information for the servo torque limiting mode

During ABS data transfer (for several seconds after the servo-on signal is turned on), the torque limiting must be off.

(4) Sequence program - 2-axis control

The following program is a reference example for creation of an ABS sequence program for the second axis (Y axis) using a single A1SD71 module. Create a program for the third axis in a similar manner.


(a) Y-axis program

Refer to the X-axis ABS sequence program and create the Y-axis program.

Assign the X inputs, Y outputs, D registers, M contacts, T timers and C counters of the Y axis so that they do not overlap those of the X axis.

The buffer memory addresses of the A1SD71 differ between the X and Y axes. The instructions marked *1 in the program of Section 15.8.1 (3), (c) should be changed as indicated below for use with the Y axis:

[Program configuration]

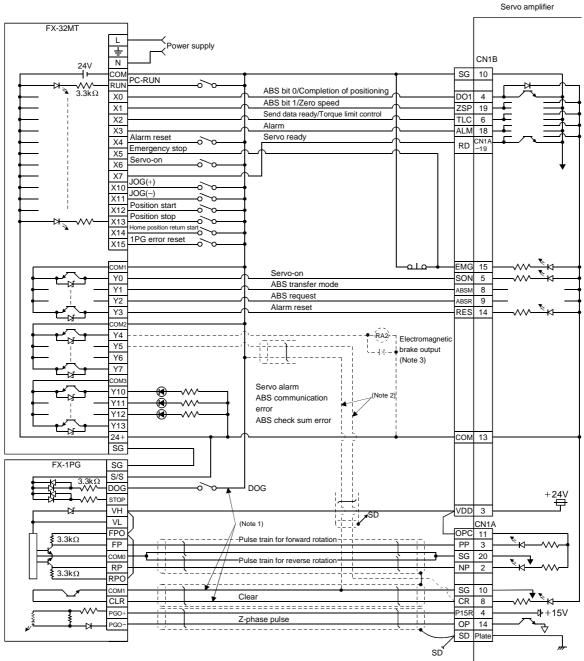
(b) Data set type home position return


Arrange the data set type home position return programs given in Section 15.8.1 (3), (f) in series to control two axes.

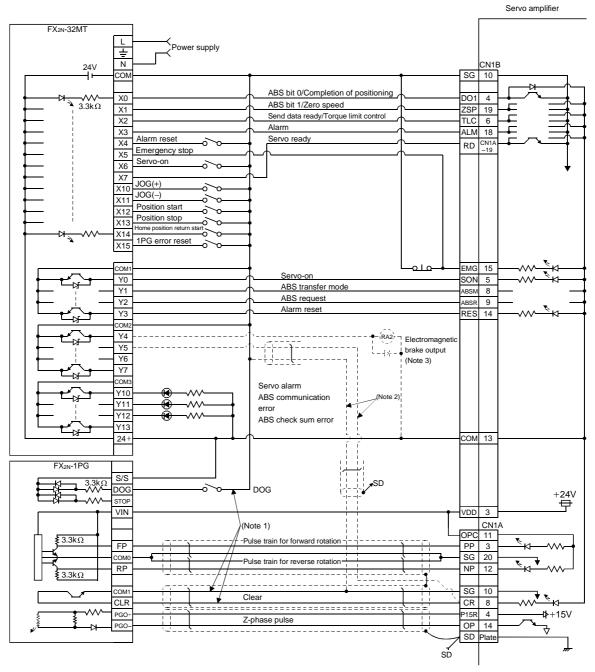
Refer to the X-axis data set type home position return program and create the Y-axis program. Assign the X inputs, Y outputs, D registers, M contacts and T timers of the Y axis so that they do not overlap those of the X axis.

The buffer memory addresses of the A1SD75 differ between the X and Y axes. The instructions marked *1 in the program of Section 15.8.1 (3), (f) should be changed as indicated below for use with the Y axis:

```
[DTOP H0001 K7912 D9 K1] \rightarrow [DTOP H0001 K7922 D9 K1] [DTOP H0001 K41 D9 K1] \rightarrow [DTOP H0001 K341 D9 K1]
```


[Program configuration]

15.8.2 MELSEC FX(2N)-32MT (FX(2N)-1PG)

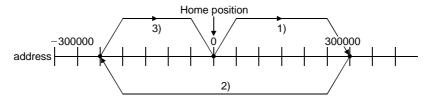

(1) Connection diagram

(a) FX-32MT (FX-1PG)

- Note 1: To be connected for the dog type home position setting. At this time, do not connect the portions marked (Note 2).
 - 2: To be connected for the data set type home position setting. At this time, do not connect the portions marked (Note 1).
 - 3: The electromagnetic brake interlock signal should be controlled by connecting the programmable controller output to a relay.

(b) FX2N-32MT (FX2N-1PG)

Note 1: To be connected for the dog type home position setting. At this time, do not connect the portions marked (Note 2).


- 2: To be connected for the data set type home position setting. At this time, do not connect the portions marked (Note 1).
- 3: The electromagnetic brake interlock signal should be controlled by connecting the programmable controller output to a relay.

(2) Sequence program example

(a) Conditions

1) Operation pattern

ABS data transfer is made as soon as the servo-on pushbutton is turned on. After that, positioning operation is performed as shown below:

After the completion of ABS data transmission, JOG operation is possible using the JOG+ or JOG— pushbutton switch.

After the completion of ABS data transmission, dog type home position return is possible using the home position return pushbutton switch.

2) Buffer memory assignment

For BFM#26 and later, refer to the FX2(N)-1PG User's Manual.

BMF No.					
Upper 16	Lower 16	Name and symbol		Set value	Remark
bits	bits				
-	#0	Pulse rate	A	2000	
#2	#1	Feed rate	В	1000	
-	#3	Parameter		H0000	Command unit: Pulses
#5	#4	Max. speed	Vmax	100000PPS	
-	#6	Bias speed	Vbia	0PPS	
#8	#7	JOG operation	Vjog	10000PPS	
#10	#9	Home position return speed (high speed)	Vrt	50000PPS	
-	#11	Home position return speed (creep)	V_{CL}	1000PPS	
-	#12	Home position return zero-point signal co	unt N	2 pulses	Initial value: 10
#14	#13	Home position address	HP	0	
-	#15	Acceleration/deceleration time	Ta	200ms	Initial value: 100
-	#16	Not usable			
#18	#17	Target address (I)	P(I)	0	
#20	#19	Operation speed (I)	V(I)	100000	Initial value: 10
#22	#21	Target address (II)	P(II)	0	
#24	#23	Operation speed (II)	V(II)	10	
-	#25	Operation command		H0000	

3) Instructions

When the servo-on pushbutton switch and the GND of the power supply are shorted, the ABS data is transmitted when the servo amplifier power is turned ON, or at the leading edge of the RUN signal after a PC reset operation (PC-RESET). The ABS data is also transmitted when an alarm is reset, or when the emergency stop state is reset.

If check sum discrepancy is detected in the transmitted data, the ABS data transmission is retried up to three times. If the check sum discrepancy is still detected after retrying, the ABS check sum error is generated (Y12 ON).

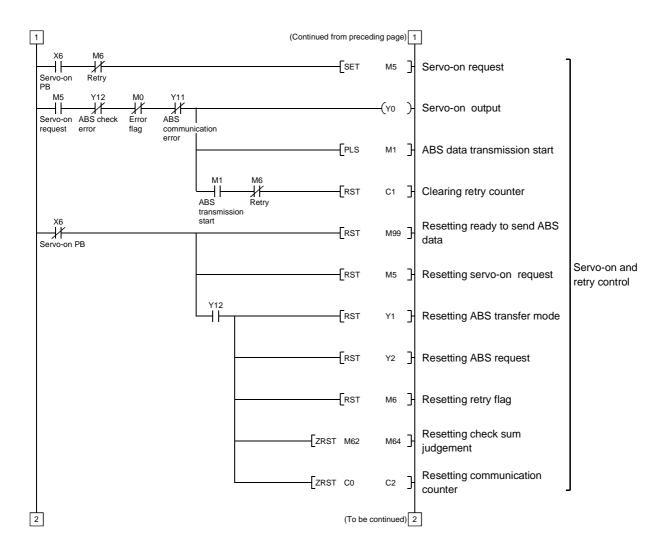
The following time periods are measured and if the ON/OFF state does not change within the specified time, the ABS communication error is generated (Y11 ON).

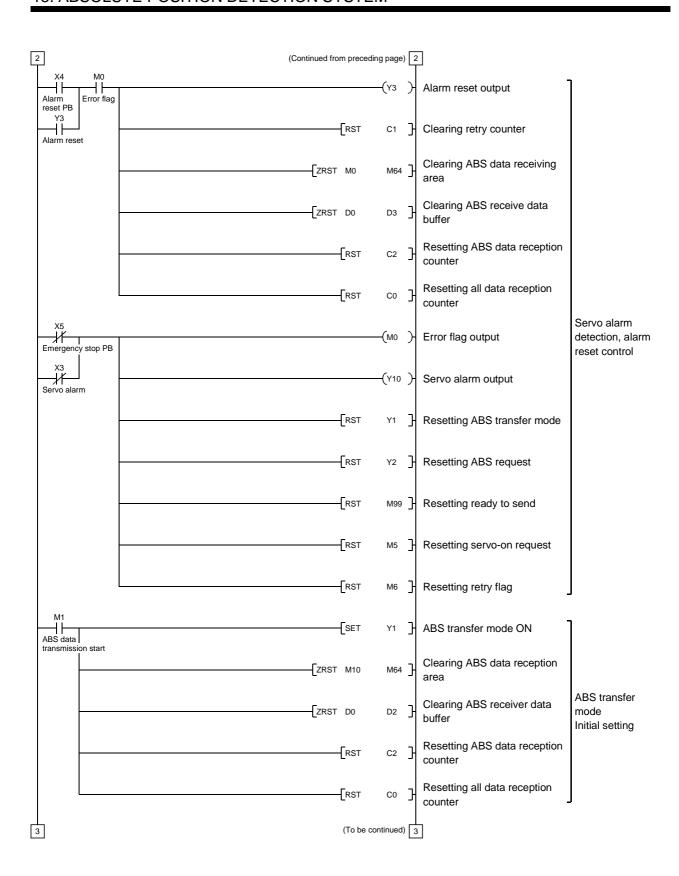
ON period of ABS transfer mode (Y1)

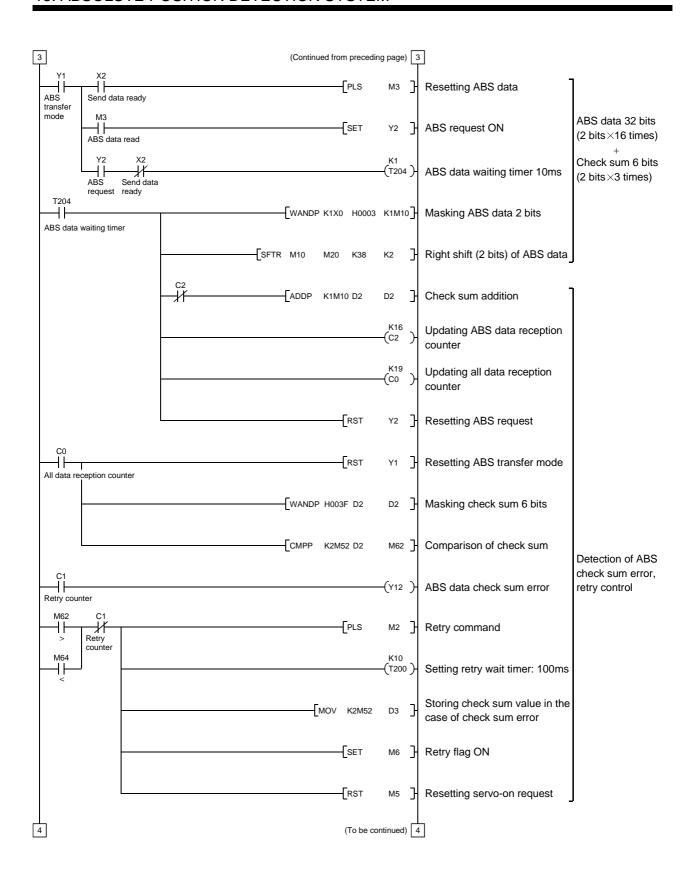
ON period of ABS request (Y2)

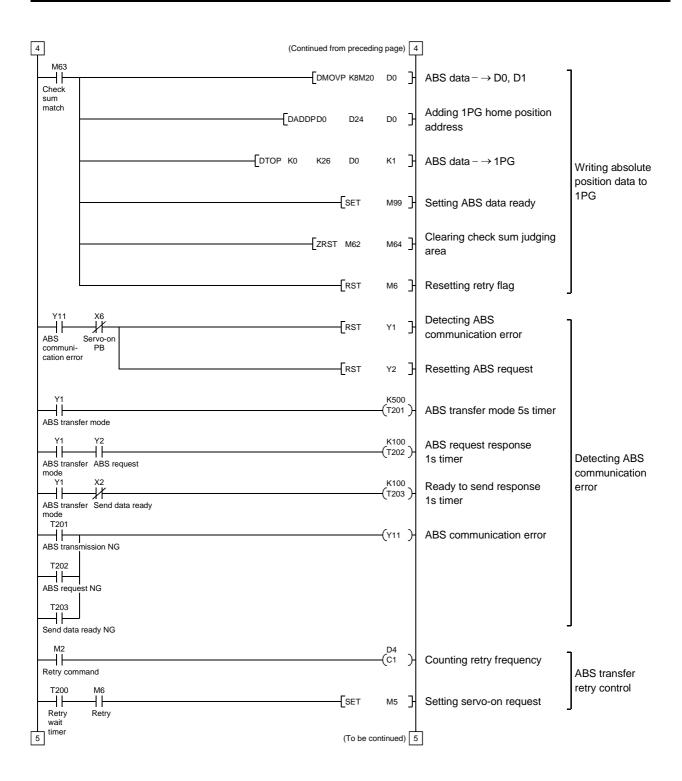
OFF period of ready to send the ABS data (X2).

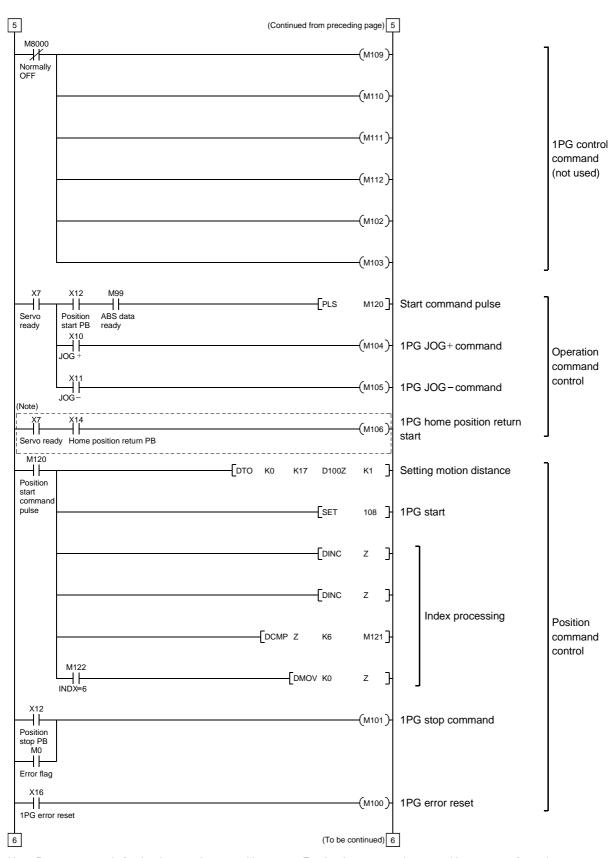
(b) Device list

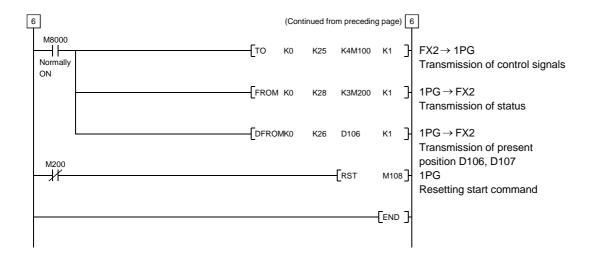

	X input contact	Y output contact							
X0	ABS bit 0 / completion of positioning	Y0	Servo-on						
X1	ABS bit 1 / zero speed	Y1	ABS transfer mode						
X2	Send ABS data ready/ torque limit control	Y2	ABS request						
X3	Servo alarm	Y3	Alarm reset						
X4	Alarm reset PB	Y4 (Note 2)	Electromagnetic brake output						
X5	Servo emergency stop	Y5 (Note 1)	Clear						
X6	Servo-on PB	Y10	Servo alarm						
X7	Servo ready	Y11	ABS communication error						
X10	JOG (+) PB	Y12	ABS check sum error						
X11	JOG (-) PB								
X12	Position start PB								
X13	Position stop PB								
X14	Home position return start PB								
X15	1PG error reset								
-	D register		M contact						
D0	ABS data: Lower 16 bits	M0	Error flag						
D1	ABS data: Upper 16 bits	M1	ABS data transmission start						
D2	Check sum addition counter	M2	Retry command						
D3	Check data in case of check sum error	M3	ABS data read						
D4	Transmission retry count in check sum	M4	Spare						
	discrepancy		*						
D24	Home position address: Lower 16 bits	M5	Servo-on request						
D25	Home position address: Upper 16 bits	M6	Retry flag						
D106	1PG present position address: Lower 16 bits	M10							
D107	1PG present position address: Upper 16 bits	M11							
	• • •	M12	ABS data 2 bit receiving buffer						
		M13							
		M20							
		\downarrow	ABS data 32 bit buffer						
		M51							
		M52							
		\downarrow	Check sum 6 bit buffer						
		M57							
		M58							
		M59	For checksum comparison						
	T timer	M62	Sum check discrepancy (greater) >						
T200	Retry wait timer	M63	Sum check discrepancy =						
T201	ABS transfer mode timer	M64	Sum check discrepancy (less) >						
T202	ABS request response timer	M70 (Note 1)	· · · · · · · · · · · · · · · · · · ·						
T203	Ready to send response timer	M71 (Note 1)	-						
T204	ABS data waiting timer	M99	ABS data ready						
T210 (Note 1)	•								
	_		C counter						
		C0	All data reception frequency counter (19 times)						
		C1	Check sum reception frequency counter						
		C2	ABS data reception frequency counter (16 times)						

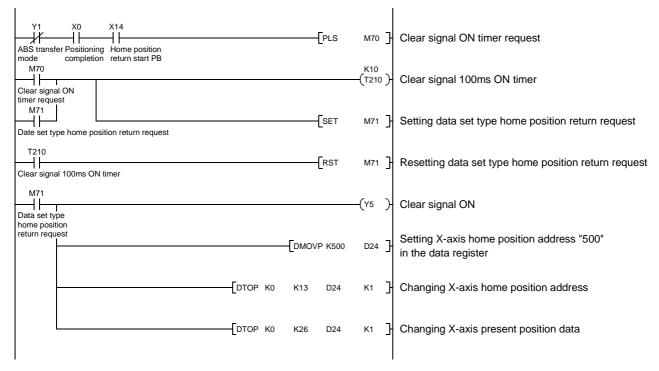

Note 1: Necessary when data set type home position return is executed.


^{2:} Necessary in the event of electromagnetic brake output.


(c) ABS data transfer program for X-axis


M8002			_[DMOV	′ K0	D24	4	Setting home position address-to 0	
pulse	_[то	K0	КЗ	K0	K1	}	Setting 1PG pulse command unit	
	_[DТО	K0	K4	K100000	K1	}	1PG max. speed: 100 kpps	
	_[DTO	K0	K7	K10000	K1	}	1PG Jog speed: 10 kpps	
	-[рто	K0	K9	K50000	K1]	1PG home position return speed: 50 kpps	
	-[то	K0	K11	K1000	K1	}	1PG creep speed: 1 kpps	
	_[то	K0	K12	K2	K1	}	1PG home position return zero-point count: twice	
	_[DТО	K0	K13	D24	K1	}	1PG home position address setting	Initial setting
	_[то	K0	K15	K200	K1	}	1PG acceleration/deceleration time: 200ms	
	-[рто	K0	K19	K100000	K1	}	1PG operation speed: 100kpps	
			-[DMOV	′ K300000	D10	0]-	Position move account 1: 300000 pulses	
			-[DMOV	′ K-250000	D10:	2]-	Position move account 2: –250000 pulses	
			_[DMOV	′ K0	D10-	4]-	Position move account 3: 0 pulses	
			_[DMOV	′ K0	Z	}	Clearing index registers V, Z	
			-[DMOV	′ K4	D4	}	Setting "4 times" for check sum error transmission frequency	
1			(To be cont	inued) [1		




Note: Program example for the dog type home position return. For the data set type home position return, refer to the program example in (2), (d) in this section.

(d) Data set type home position return

After jogging the machine to the position where the home position (e.g.500) is to be set, choose the home position return mode set the home position with the home position return start (PBON). After switching power on, rotate the servo motor more than 1 revolution before starting home position return.

Do not turn ON the clear signal (Y5) for an operation other than home position return. Turning it ON in other circumstances will cause position shift.

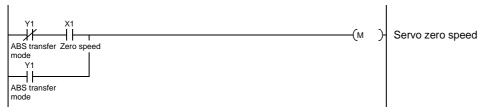
(e) Electromagnetic brake output

During ABS data transfer (for several seconds after the servo-on signal is turned on), the servo motor must be at a stop.

Set " $1 \square 1 \square$ " in parameter No. 1 of the servo amplifier to choose the electromagnetic brake interlock signal.

(f) Positioning completion

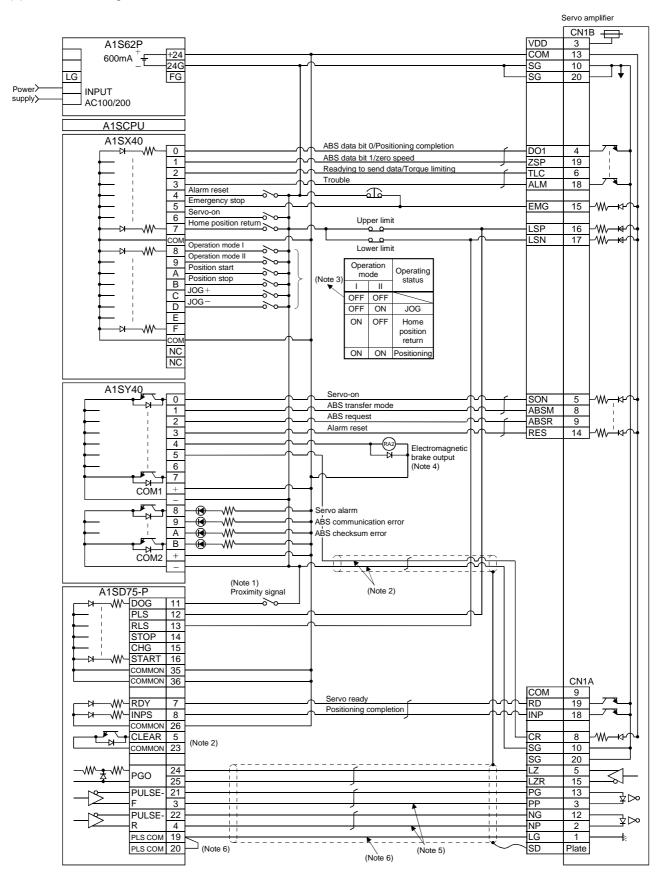
To create the status information for servo positioning completion.


During ABS data transfer (for several seconds after the servo-on signal is turned on), the servo motor must be at a stop.

(g) Zero speed

To create the status information for servo zero speed.

During ABS data transfer (for several seconds after the servo-on signal is turned on), the servo motor must be at a stop.


(h) Torque limiting

To create the status information for the servo torque limiting mode.

During ABS data transfer (for several seconds after the servo-on signal is turned on), the torque limiting must be off.

15.8.3 MELSEC A1SD75(AD75)

(1) Connection diagram

15. ABSOLUTE POSITION DETECTION SYSTEM

Note 1: For the dog type home position return. Need not be connected for the data set type home position return.

- 2: If the servo motor provided with the zero point signal is started, the A1SD75(AD75) will output the deviation counter clear signal. Therefore, do not connect the clear signal of the MR-J2-A to the A1SD75(AD75) but connect it to the output module of the programmable controller.
- 3: This circuit is provided for your reference.
- $4: The \ electromagnetic \ brake \ output \ should \ be \ controlled \ via \ a \ relay \ connected \ to \ the \ programmable \ controller \ output.$
- 5: Use the differential line driver system for pulse input. Do not use the open collector system.
- 6: To reinforce noise suppression, connect LG and pulse output COM.

(2) Sequence program example

(a) Conditions

- 1) When the servo-on signal and power supply GND are shorted, the ABS data is transmitted at power-on of the servo amplifier or on the leading edge of the RUN signal after a PC reset operation (PC-RESET). The ABS data is also transmitted when an alarm is reset or when an emergency stop is reset.
- 2) If a checksum mismatch is detected in the transmitted data, data transmission is retried up to three times. If the checksum mismatch still persists after the retries, the ABS checksum error occurs (Y3A ON).
- 3) The following time periods are measured. If the ON/OFF state does not change within the specified time, the ABS communication error occurs change within the specified time, the ABS communication error occurs (Y3A ON):

ON period of ABS transfer mode (Y31)

ON period of ABS request (Y32)

OFF period of reading to send ABS data (X22)

(b) Device list

	X input contact	Y output contact					
X20	ABS bit 0 / positioning completion	Y30	Servo-on				
X21	ABS bit 1 / zero speed	Y31	ABS transfer mode				
X22	Reading to send ABS data / limiting torque	Y32	ABS request				
X23	Servo alarm	Y33	Alarm reset				
X24	Alarm reset	X34 (Note 2)	Electromagnetic brake output				
X25	Servo emergency stop	Y35 (Note 1)	Clear				
X26	Servo-on	Y38	Servo alarm				
X27	Home position return start 2)	Y39	ABS communication error				
X28	Operation mode I	Y3A	ABS checksum error				
X29	Operation mode II						
1)	D register		M contact				
D0	ABS data transmission counter	M5	ABS data transmission start				
D1	Checksum transmission counter	M6	Sum check completion				
D2	Checksum addition register	M7	Sum check mismatch				
D3	ABS data: Lower 16 bits	M8	ABS data ready				
D4	ABS data: Upper 16 bits	M9	Transmission data read enabled				
D5	ABS data 2-bit receiving buffer	M10	Checksum 2 bits read completion				
D6	Check data in case of checksum error $_{4)}$	M11	ABS 2 bits read completion				
D7	Number of retries	M12	ABS 2 bits request				
D8	Forward rotation direction	M13	Servo-on request				
D9	Home position address: Lower 16 bits	M14	Servo alarm				
D10	Home position address: Upper 16 bits	M15	ABS data transmission retry start pulse				
D11	Drive unit ready data	M16	Retry flag set				
D12	Home position return completion data	M17	Retry flag reset				
D110	Received shift data: Lower 16 bits	M18	PLS processing command				
D111	Received shift data: Upper 16 bits	M20 (Note 1)	Clear signal ON timer request				
3)	T timer	M21 (Note 1)	Data set type home position return request				
T0	ABS transmission mode timer	M22	Home position return processing				
T1	ABS request response timer		instruction				
T2	Retry wait timer	M23	Current position change processing				
T3	ABS data send reading response timer		instruction				
T10 (Note 1)	Clear signal ON timer	M24	Current position change flag				
T200	Transmitted data read 10ms delay timer		C counter				
		C0	ABS data receive times counter				
		C1	Checksum receive times counter				
		C2	Retry counter				

Note: 1. Required for data set type home position return.

^{2.} Required for electromagnetic brake output.

(c) ABS data transfer program for X axis

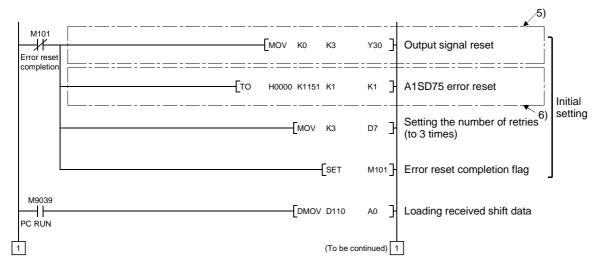
2) Travel per pulse :1 = 1 pulse

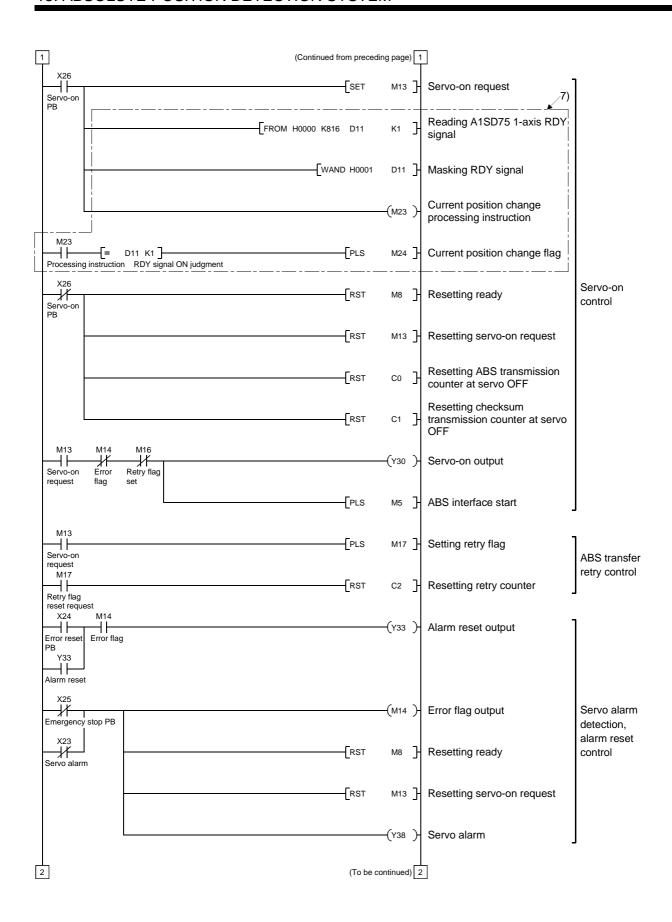
This sequence program example assumes the following conditions:

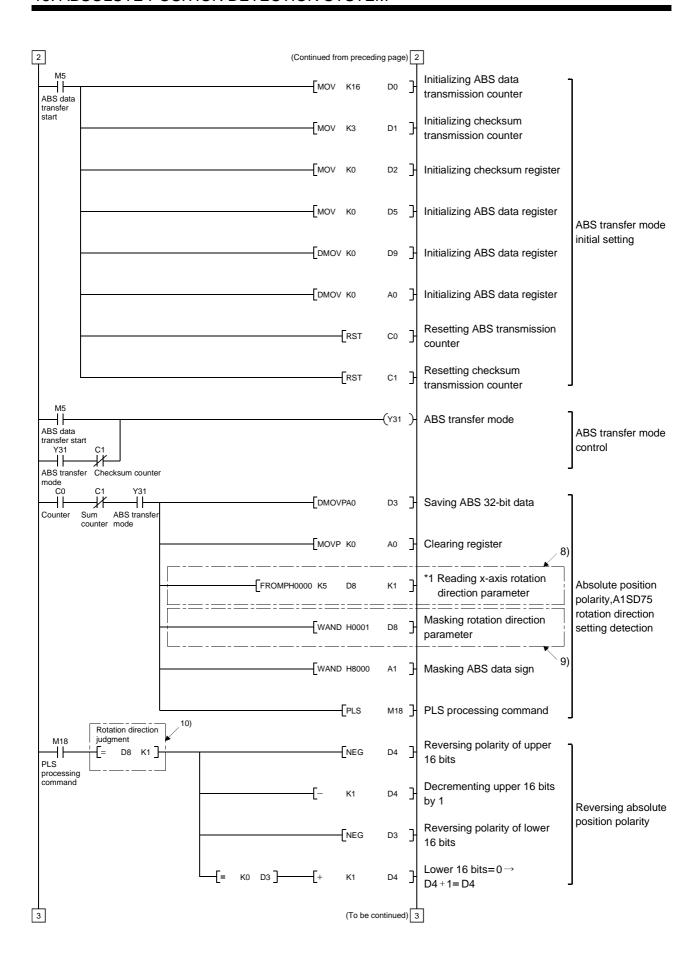
Parameters of the A1SD75-P1 (AD75-P1) positioning module

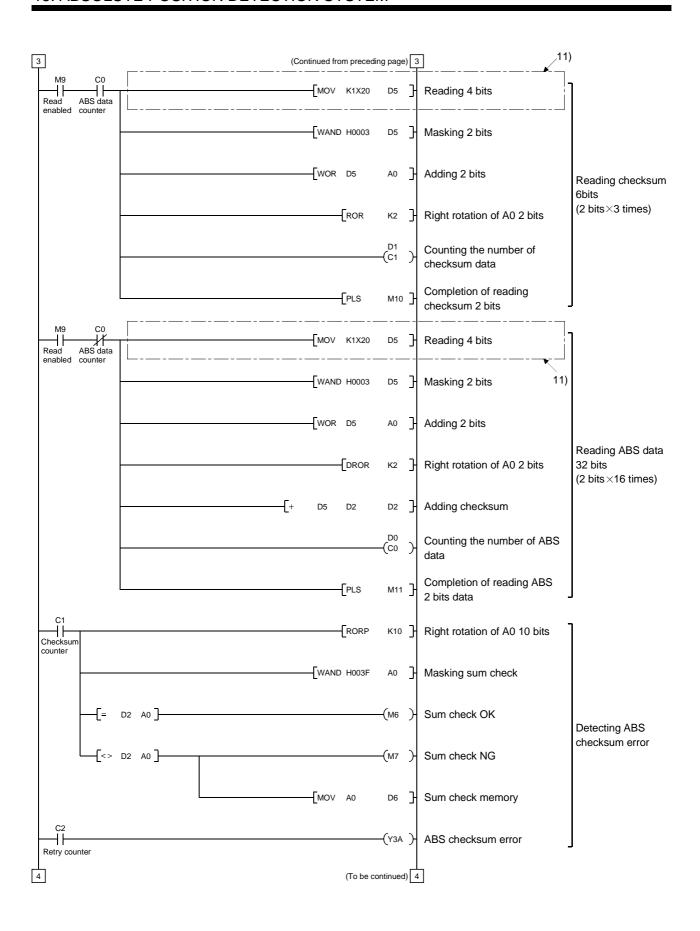
1) Unit setting :3 = pulse (PLS)

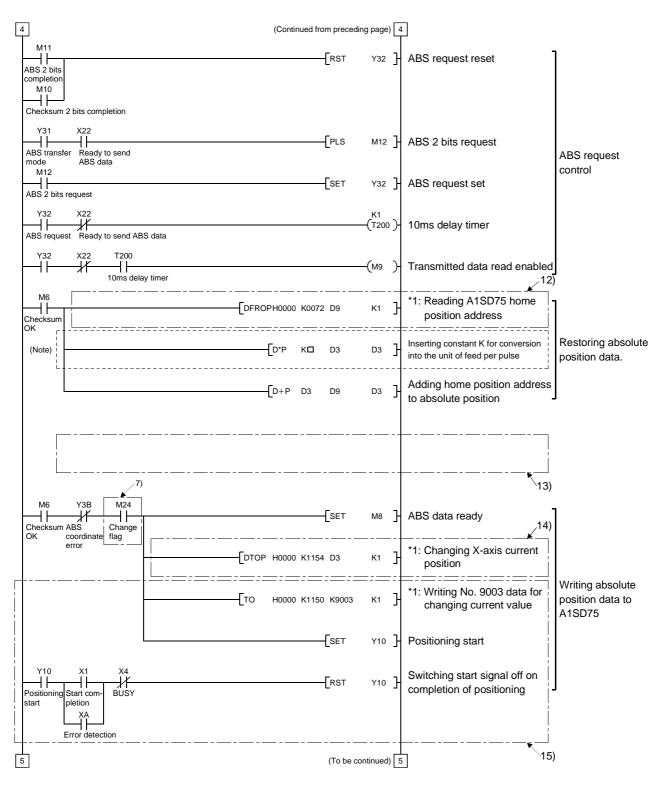
To select the unit other than the pulse, conversion into the unit of the feed value per pulse is

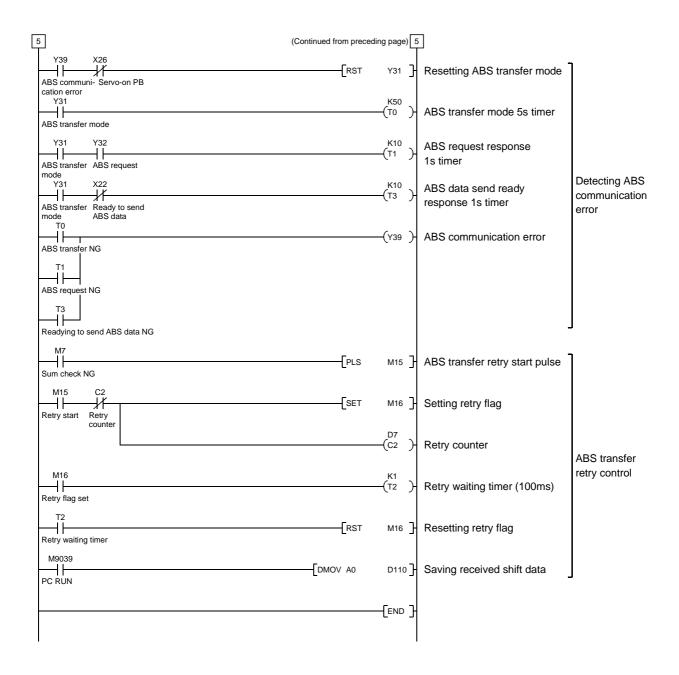

required. Hence, add the following program to the area marked (Note) in the sequence program:


<Additional program>


——[D*PK <u>□□</u> D3D3]		Item	mm				ine	ch	degree				pulse		
		Unit setting	0					1	Į.	2				3	
		Travel per pulse	0.1 to	1 to	10 to	100	0.00001	0.0001	0.001	0.01	0.00001	0.0001	0.001	0.01	
		Traver per puise	0.1 to	1 10	10 10	100	to	to	to	to	to	to	to	to	
		Unit of travel		μm/PLS			inch/PLS				degree/PLS				PLS
		Constant K for conversion into unit of travel	1 to	10 to	100 to	1000	1 to	10 to	100 to	1000	1 to	10 to	100 to	1000	None


Reference

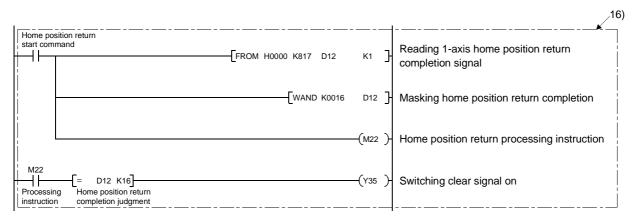

- For 1µm/PLS, set constant K to 10
- For $5\mu m/PLS$, set constant K to 50
- The additional program is not required for the unit setting is PLS.



Note: When the unit setting parameter value of the AD75 positioning module is changed from "3" (pulse) to "0" (mm), the unit is $\times 0.1 \mu m$ for the input value. To set the unit to $\times 1 \mu m$, add this program to multiple the feed value by 10.

(d) X-axis program

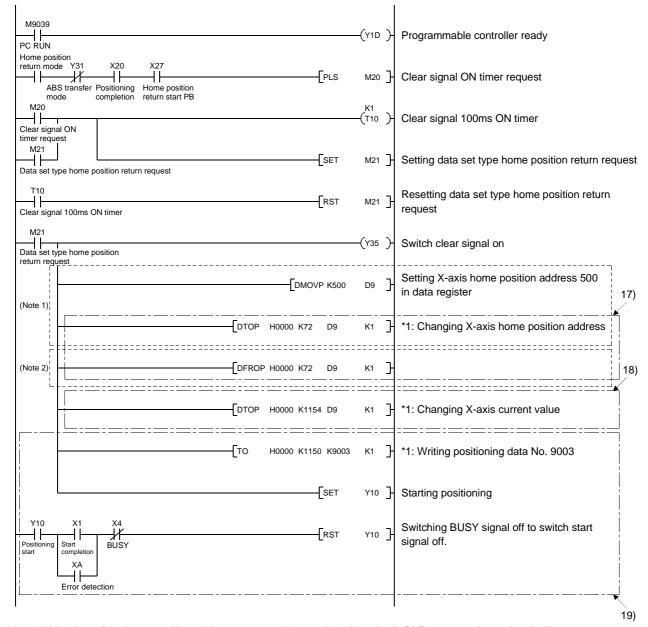
Do not execute the X-axis program while the ABS ready (M8) is off.



(e) Dog type home position return

Refer to the home position return program in the A1SD75 User's Manual.

Note that this program requires a program which outputs the clear signal (Y35) after completion of home position return.


Add the following program:

(f) Data set type home position return

After jogging the machine to the position where the home position (e.g. 500) is to be set, choose the home position return mode and set the home position with the home position return start (PBON). After switching power on, rotate the servo motor more than 1 revolution before starting home position return.

Do not turn ON the clear signal (Y35) for an operation other than home position return. Turning it on in other circumstances will cause position shift.

Note 1: If the data of the home position address parameter is not written from the A7PHP programming tool or the like before starting the data set type home position return program, this sequence circuit (Note 1) is required and the sequence circuit (Note 2) is not required.

^{2:} Contrary to above 2, if the home position address is written in the home position address parameter, the sequence circuit (Note1) is not required but this sequence circuit (Note1) is required.

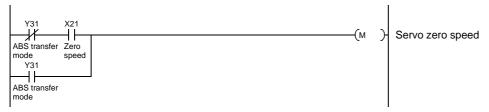
(g) Electromagnetic brake output

During ABS data transfer (for several seconds after the servo-on signal is turned on), the servo motor must be at a stop.

Set " $1 \square 1 \square$ " in parameter No. 1 of the servo amplifier to choose the electromagnetic brake interlock signal.

(h) Positioning completion

To create the status information for servo positioning completion.


During ABS data transfer (for several seconds after the servo-on signal is turned on), the servo motor must be at a stop.

(i) Zero speed

To create the status information for servo zero speed.

During ABS data transfer (for several seconds after the servo-on signal is turned on), the servo motor must be at a stop.

(j) Torque limiting

To create the status information for the servo torque limiting mode.

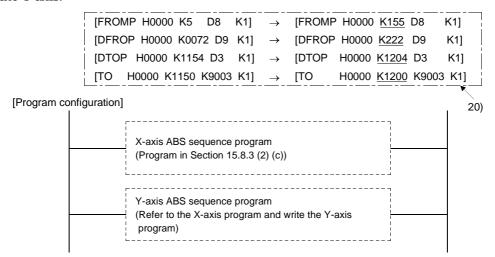
During ABS data transfer (for several seconds after the servo-on signal is turned on), the torque limiting must be off.

```
Y31 X22

ABS transfer Torque limiting mode

M Servo torque limiting mode
```

(3) Sequence program - 2-axis control

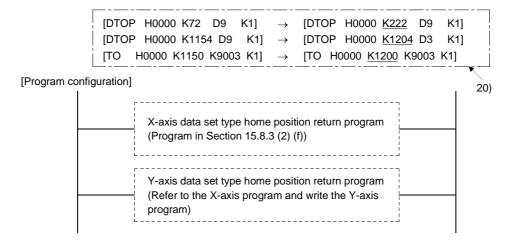

The following program is a reference example for creation of an ABS sequence program for the second axis (Y axis) using a single A1SD75 module. Create a program for the third axis in a similar manner.

(a) Y-axis program

Refer to the X-axis ABS sequence program and create the Y-axis program.

Assign the X inputs, Y outputs, D registers, M contacts, T timers and C counters of the Y axis so that they do not overlap those of the X axis.

The buffer memory addresses of the A1SD75 differ between the X and Y axes. The instructions marked *1 in the program of Section 15.8.3 (2), (c) should be changed as indicated below for use with the Y axis:



(b) Data set type home position return

Arrange the data set type home position return programs given in Section 15.8.3 (2), (f) in series to control two axes.

Refer to the X-axis data set type home position return program and create the Y-axis program. Assign the X inputs, Y outputs, D registers, M contacts and T timers of the Y axis so that they do not overlap those of the X axis.

The buffer memory addresses of the A1SD75 differ between the X and Y axes. The instructions marked *1 in the program of Section 15.8.3 (2), (f) should be changed as indicated below for use with the Y axis:

(4) Differences between A1SD75 (AD75) and A1SD71 (AD71)

The sequence programs shown in (2) of this section differ from those for the A1SD71 (AD71) in the following portions. 1) to 20) in the following sentences indicate the numbers in the programs given in (2) of this section.

(a) Devices used

Since the A1SD75 (AD75) is a one-slot module which occupies 32 I/O points, the I/O devices are different, as indicated by 1) and 2), from those of the two-slot A1SD71 which occupies 48 point. The A1SD75 (AD75) uses the devices indicated in the following table, and its D registers and M contacts are different as indicated by 3) and 4).

contacts are u	1	Devices		J -,,-	Bit device :Data at ON	
Device name	Axis 1	Axis 2	Axis 3	Application	Data register :Stored data	
		X0		AD75 ready	Not ready/ WDT error	
Input	X4	X5	X6	BUSY	BUSY(running)	
	XA	XB	XC	Error detection	Error detection	
	Y10	Y11	Y12	Positioning start	Start being requested	
	Y13	Y14	Y1C	Axis stop	Stop being requested	
Output	Y16	Y18	Y1A	Forward rotation jog start	Forward rotation being started	
Output	Y17	Y19	Y1B	Reverse rotation jog start	Reverse rotation being started	
		Y1D		Programmable controller ready	Programmable controller CPU normal	
		M0		Parameter setting completion flag	Setting complete	
		M1		Flash ROM registration processing flag	Processing	
	M2	М3	M4	Axis error reset requesting flag	Requesting	
internal relay		M100		AD75 normal flag	AD75 normal	
		M101	Initial error reset completion flag		Error reset complete	
		M102		All BUSY signal OFF flag	All BUSY signal OFF	
		M103		AD75 operable flag	Operable	
		D100		Flash ROM registration results	Registration results	
Data register	D101	D102	D103	Axis error code	Error code	
Data register	D104	D105	D106	Axis warning code	Warning code	
·	D107	D108	D109	Axis error reset results	Axis error reset results	

(b) ABS sequence program example

1) Initial setting

To reset the error of the A1SD75, the program 5) is added to reset all output signals at start-up. The axis error reset buffer memory address is changed from 201 to 1154 (axis 1) and the slot number from H0001 (slot number 1) to H0000 (slot number 2) 6).

- 2) Absolute position polarity, A1SD75 rotation direction setting detection
 - The slot number and buffer memory of the X-axis rotation direction parameter reading area are changed from [FROMP H0001 K7872 D8 K1] to [FROMP $\underline{H0000}$ $\underline{K5}$ D8 K1] 8).
 - The rotation direction parameter masking area is changed from [WAND H0004 D8] to [WAND H0001 D8] 9).
- 3) Reversing absolute position polarity
 - The rotation direction judging area is changed from [= D8 K4] to [= D8 K1] 10).
- 4) Reading checksum 6 bits, reading ABS data 32 bits
 - The 4 bits reading area is changed from [MOV K1 X30D5] to [MOV K1X20 D5] 11).
- 5) Restoring absolute position data
 - The slot number and buffer address of the A1SD75 home position address reading area are changed from [DFROP H0001 K7912 D9 K1] to [DFROP H0000 K72 D9 K1] 12)

6) Writing absolute position data to A1SD75

The slot number and buffer address of the X-axis current value changing area are changed from [DTOP H0001 K41 D3 K1] to [DTOP H0000 K1154 D3 K1] 14). When the current value is changed in the A1SD75, the current feed value is changed at the start of positioning data No.9003. Therefore, the starting program for positioning data No.9003 15) is added.

7) X-axis data set type home position return program

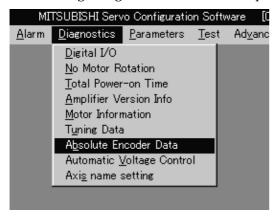
The slot numbers and buffer addresses of the X-axis home position address changing area are changed from [DTOP H0001 K7912 D9 K1] to [DTOP H0000 K72 D9 K1] and from [DFROP H0001 K7912 D9 K1] to [DFROP H0000 K72 D9 K1] 17).

The slot number and buffer address of the X-axis current value changing area are changed from [DTOP H0001 K41 D3 K1] to [DTOP H0000 K1154 D3 K1] 18). When the current value is changed in the A1SD75, the current feed value is changed at the start of positioning data No.9003. Therefore, the starting program for positioning data No.9003 19) is added.

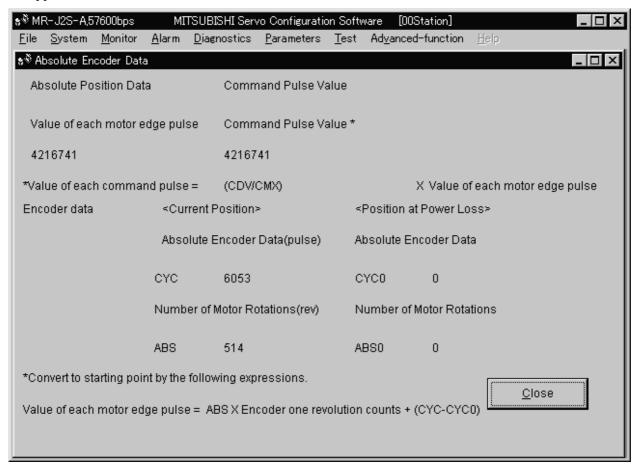
- 8) Y-axis sequence program, Y-axis data set type home position return program. The slot numbers and buffer addresses are changed as indicated by 20).
- 9) Writing absolute position data to AD75

The A1SD75 (AD75) allows the current position to be changed only when the ready signal of the Servo amplifier is on. Therefore, if the CPU scan is fast, the program for A1SD71 may change the current position before the ready signal switches on. 7) is added because the current position must be changed after it has been confirmed that the drive unit ready signal of the A1SD75 (D75) has switched on/off.

10) ABS coordinate error detection


As the A1SD75 (AD75) can handle the negative-polarity coordinate position that the A1SD71 could not handle, the program for ABS coordinate error detection is deleted. 13)

11) Dog type home position return program


Due to the changes in wiring described in (4), (a), 4) of this section, the program for outputting the clear signal (Y35) after completion of a home position return is required. 16)

15.9 Confirmation of absolute position detection data

You can confirm the absolute position data with servo configuration software (MRZJW3-SETUP121E). Choose "Diagnostics" and "Absolute Encoder Data" to open the absolute position data display screen. (1) Choosing "Diagnostics" in the menu opens the sub-menu as shown below:

(2) By choosing "Absolute Encoder Data" in the sub-menu, the absolute encoder data display window appears.

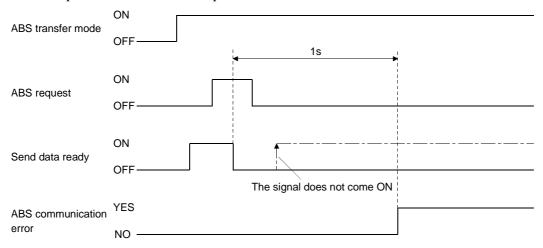
(3) Press the "Close" button to close the absolute encoder data display window.

15.10 Absolute position data transfer errors

15.10.1 Corrective actions

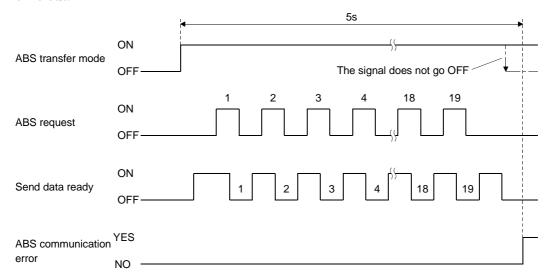
(1) Error list

The number within parentheses in the table indicates the output coil or input contact number of the A1SD71 (AD71).

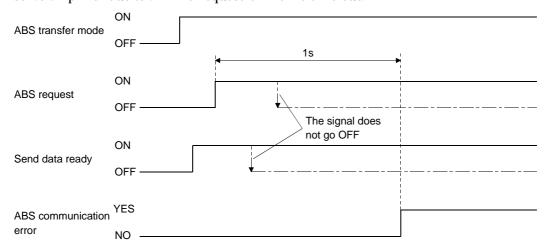

Name	Outpu		Description	Cause	Action
	AD71	1PG	·		
(Note) ABS communication error	signal (Y41) is not completed		within 5s. 2. The ready to send signal	 Wiring for ABS transfer mode signal, ABS data request signal, or ready to send signal is disconnected or connected to the SG terminal. 	Correct the wiring.
			within 1s after the ABS data	2. PC ladder program wrong.	Correct the ladder.
			ON.	3. Faulty PLC output or input module.	Change the input or output module.
			3. The ready to send signal (X32) remains OFF for longer	4. Faulty printed board in the servo amplifier.	Change the amplifier
			than 1s.	5. Power supply to the servo amplifier is OFF.	Turn on the power to the servo amplifier.
ABS data check sum error	Y4A	Y12	ABS data sumcheck resulted in mismatch four times consecutively.	Wiring for the ABS data signal (ABS bit 0 (PF), bit 1 (ZSP)) is disconnected or connected to the SG terminal.	Correct the wiring.
				2. PC ladder program wrong.	Correct the ladder.
				3. Faulty PLC input module.	Change the input module.
				4. Faulty printed board in the servo amplifier.	Change the amplifier.
ABS coordinate error	Y4B		• The motor position is in the negative coordinate value range when the servo is turned ON or when power supply is turned ON.	1. The servo is turned ON or the power supply is turned ON near the machine home position or in the zone in which addresses decrease.	 Reconsider the position where the servo is turned ON. Set the home position for positioning apart from the machine home position.
				2. The machine falls on a vertical axis when the servo signal is turned ON/OFF.	Change the electromagnetic brake operation sequence.
Servo alarm	Y48	Y10	Alarm occurred in the servo amplifier.	Emergency stop (EMG) of the servo amplifier was turned off.	After ensuring safety, turn EMG on.
				2. Trouble (ALM) of the servo amplifier was turned on.	Refer to Section 10.2.2 and take action.

Note: Refer to (2) in this section for details of error occurrence definitions.

(2) ABS communication error


(a) The OFF period of the send data ready signal output from the servo amplifier is checked. If the OFF period is 1s or longer, this is regarded as a transfer fault and the ABS communication error is generated.

The ABS communication error occurs if the ABS time-out warning (AL.E5) is generated at the servo amplifier due to an ABS request ON time time-out.



(b) The time required for the ABS transfer mode signal to go OFF after it has been turned ON (ABS transfer time) is checked.

If the ABS transfer time is longer than 5s, this is communication error occurs if the ABS time-out warning (AL.E5) is generated at the servo amplifier due to an ABS transfer mode completion time time-out.

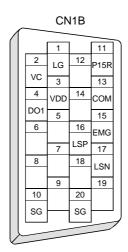
(c) To detect the ABS time-out warning (AL.E5) at the servo amplifier, the time required for the ABS request signal to go OFF after it has been turned ON (ABS request time) is checked. If the ABS request remains ON for longer than 1s, it is regarded that an fault relating to the ABS request signal or the send data ready signal has occurred, and the ABS communication error is generated. The ABS communication error occurs if the ABS time-out warning (AL.E5) is generated at the servo amplifier due to an ABS request OFF time time-out.

15.10.2 Error resetting conditions

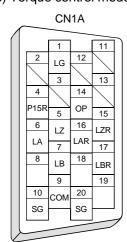
Always remove the cause of the error before resetting the error.

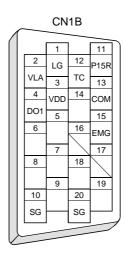
Name	Output coil		Servo status	Departing condition	
Name	AD71	1PG	Servo status	Resetting condition	
ABS communication error	Y49	Y11	Ready (RD) signal off	Reset when servo-on PB (X36)	
				signal turns off.	
ABS checksum error	Y4A	Y12	Ready (RD) signal on	For AD71	
				Reset when servo-on PB (X36)	
				signal turns from off to on.	
				For FX-1PG	
				Reset when servo-on PB (X36)	
				signal turns off.	
ABS coordinate error	Y4B		Ready (RD) signal on	Reset when servo-on PB (X36)	
				signal turns from off to on after a	
				motion to (+) coordinate is made by	
				jog operation.	
Servo alarm	Y48	Y10	Ready (RD) signal on	Reset when alarm reset PB turns	
				on or power switches from off to on.	

App 1. Signal arrangement recording sheets

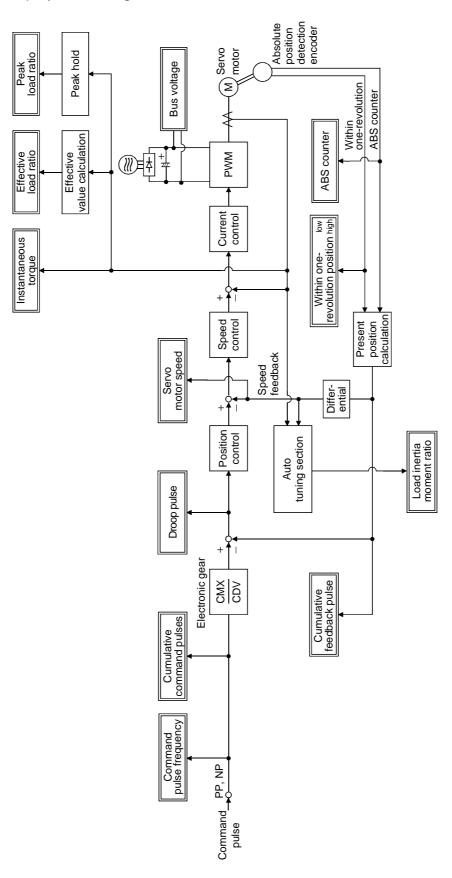

(1) Position control mode

	CN	I1A		
	1		11	
2	LG	12	OPC	
NP	3	NG	13	
4	PP	14	PG	
P15R	5	OP	15	
6	LZ	16	LZR	
LA	7	LAR	17	
8	LB	18	LBR	
	9		19	
10	сом	20		
SG		SG		١.
				1


_	CI	N1B		
	1		11	
2	LG	12	P15R	
	3	TLA	13	
4	VDD	14	СОМ	
DO1	5		15	
6		16	EMG	
	7	LSP	17	
8		18	LSN	
	9		19	
10		20		
SG		SG		,
				1


(2) Speed control mode

,		CN	1A		
		$\overline{}$	_	_	$\overline{}$
		1		11	
	2	LG	12		
		3		13	
	4		14		
	P15R	5	OP	15	
	6	LZ	16	LZR	
	LA	7	LAR	17	
	8	LB	18	LBR	
		9		19	
	10	сом	20		
	SG		SG		IJ
					1



(3) Torque control mode

App 2. Status display block diagram

REVISIONS

		*The manual number is given on the bottom left of the back cov
Print data	*Manual number	Revision
Nov.,1999	SH(NA)030006-A	First edition
Sep.,2000	SH(NA)030006-B	Addition of single-phase 100VAC specifications
•		Compatible Servo Configuration software model name change
		Compliance with EC Directives 1: Review of sentence
		Section 1.2: Review of function block diagram
		Section 1.3: Moving of servo amplifier standard specifications
		Review of torque limit description in position control mode
		Review of torque limit description in speed control mode
		Deletion of torque linearity in torque limit mode
		Addition of speed limit in torque control mode
		Section 3.1.1 (1): Addition of encoder Z-phase pulse connection
		Addition of Note for use of junction terminal block
		Section 3.1.1 (2): Addition of Note for increased noise immunity
		Section 3.1.2: Addition of Note for input of negative voltage
		Section 3.1.3: Addition of Note for input of negative voltage
		Section 3.3.1 (2): Review of Note
		Section 3.4.1 (4): Addition of description about electronic gear switching
		Section 3.4.3 (1)(a): Review of description for low voltage
		Section 3.5: Change in timing chart
		Section 3.5 3): Review of description
		Section 3.6.2 (7): Review of connection
		Section 3.9: Review of Connection Section 3.9: Review of POINT
		Section 3.9 (3)(b),(c): Change in timing chart
		Section 3.9 (3)(d),(e): Addition
		Section 5.9 (3)(d), (e). Addition Section 5.1.2 (2): Deletion of description as to parameter No. 22 TC, TLA
		Addition of parameter No. 27 setting example
		Correction of parameter No. 35 setting range
		Review of parameter No. 47, 48 sentences
		Section 5.2.5: Correction of operation pattern diagram
		Section 6.2.2: Review of within one-revolution position sentence
		Section 6.3: Review of automatic VC offset description
		Section 6.6 (2)(a): Review of Note
		Section 6.8: Review of PL sentence
		Chapter 7: Addition of POINT
		Section 7.3.2 (1), (2): Review of sentence makeup
		Section 7.4: Addition
		Section 8.1.1: Addition
		Section 8.3.2: Addition
		Section 10.1.1 (1): Addition of Investigation item at power-on
		Section 10.1.2: Addition of Investigation item at power-on
		Addition of Investigation item at on of ST1 or ST2
		Section 10.1.3: Addition of Investigation item at power-on
		Addition of Investigation item at on of ST1 or ST2
		Section 10.2: Addition of POINT
		Section 10.2.2: Review of Cause of AL.10
		Deletion of Cause 4 of AL.16
		Review of Cause and Action of AL.24
		Addition of description to AL.25

Print data	*Manual number	Revision
Sep.,2000	SH(NA)030006-B	Section 10.2.2: Addition of description to AL.30
		Addition of Cause to AL.33
		Chapter 11: Changed to only outline dimensional drawing
		Section 11.2 (2): Addition
		Section 12.2 (1): Review of Note for Table 12.1
		Section 12.3: Correction of dynamic brake time constant graph
		Chapter 13: Deletion of MR-CPC98CBL3M communication cable
		Section 13.1.1 (4)(c): Review of outline drawing
		Section 13.1.2 (1): Deletion of MR-PWCNF power supply connector set
		Section 13.1.2 (1)1), 6): Change of encoder side connector models
		Section 13.1.2 (1)19), 20): Change of terminal models
		Section 13.1.2 (2)(a)2): Addition of description for fabrication
		Section 13.1.3: Addition of POINT
		Section 13.1.3 (4): Addition of cable length
		Change in connection diagram
		Section 13.2.1 (1): Addition of Note for recommended wires
		Section 13.2.8 (1): Addition of leakage current to recommended filter
		Section 14.1.2 (2): Deletion of MR-CPC98CBL3M communication cable
		Section 14.11.1 (6): Addition
		Section 14.11.2 (8): Addition
		Section 15.7: Addition of POINT
		Section 15.8.1 (1)(b): Change in b) Coordinates when zero address is changed
		to other than 0
		Section 15.8.2 (1)(b): Review of connection diagram
		Section 15.9: Change of display screen
	Section 15.10.1 (1): Deletion of Cause 5 of ABS checksum error	
Feb.,2001	SH(NA)030006-C	Addition of MR-J2S-500A, 700A servo amplifiers
		Addition of HC-KFS73, HC-SFS502, HC-SFS702, HC-RFS353, HC-RFS503,
		HC-UFS502, HC-UFS353 servo motors
		Section 1.2: Function block diagram modification
		Section 1.7: Overall reexamination
		Section 3.7.1(2): Addition of single-phase 100 to 120VAC
		Section 3.7.2: Addition of regenerative brake converter and brake unit
		Section 5.1.2(2): No. 0, Item addition to regenerative brake option selection
		No. 5, Example addition
		No. 27, Setting range change
		No. 49, AL.26 addition
		Section 5.2.2: Overall reexamination
		Section 7.4(1): Reexamination
		Chapter 8: Hierarchy reexamination
		Section 10.2.2: AL.30, Reexamination
		AL.8E, Reexamination of Cause and Action
		Section 11.1(4)(5): Addition
		Section 11.2(3): Addition
		Section 12.1(3): Addition
		Chapter 13: Hierarchy reexamination
		Section 13.1.4(1): Connection diagram change
		Cable addition
		Section 13.1.4(3): Reexamination
		Section 13.2.1(1): Connection diagram change
		Wire table addition
	1	Chapter 15: Addition of Note on AL.25

GREECE

HEADQUARTERS

MITSUBISHI ELECTRIC **EUROPE** EUROPE B.V. German Branch Gothaer Straße 8

D-40880 Ratingen Phone: +49 (0) 21 02 / 486-0 Fax: +49 (0) 21 02 / 4 86-1120 E mail: megfa-mail@meg.mee.com

MITSUBISHI ELECTRIC FRANCE **FRANCE** 25, Boulevard des Bouvets F-92741 Nanterre Cedex Phone: +33 1 55 68 55 68 Fax: +33 1 55 68 56 85 E mail: factory.automation@fra.mee.com

MITSUBISHI ELECTRIC **EUROPE B.V.** Italian Branch C.D. Colleoni - P. Perseo Ing. 2 Via Paracelso 12

I-20041 Agrate Brianza (MI) Phone: +39 (0) 39 / 60 53 1 Fax: +39 (0) 39 / 60 53 312 E mail: factory.automation@it.mee.com MITSUBISHI ELECTRIC

EUROPE B.V. Carretera de Rubí 76-80

E-08190 Sant Cugat del Vallés Phone: +34 (9) 3 / 565 31 31 Fax: +34 (9) 3 / 589 29 48 E mail:

MITSUBISHI ELECTRIC FUROPE B.V. **UK Branch** Travellers Lane

GB-Hatfield Herts. AL10 8 XB Phone: +44 (0) 1707 / 27 61 00 Fax: +44 (0) 1707 / 27 86 95

MITSUBISHI ELECTRIC JAPAN CORPORATION Mitsubishi Denki Bldg. 2-2-3 Marunouchi Chiyoda-Ku Tokyo 100-8310 Phone: +81 (0) 3 / 32 18 31 76 Fax: +81 (0) 3 / 32 18 24 22

MITSUBISHI ELECTRIC **AUTOMATION** 500 Corporate Woods Parkway Vernon Hills, Illinois 60061 Phone: +1 (0) 847 / 478 21 00 Fax: +1 (0) 847 / 478 22 83

EUROPEAN REPRESENTATIVES

AUSTRIA

DANMARK

FINLAND

GEVA Wiener Straße 89 A-2500 Baden

Phone: +43 (0) 2252 / 85 55 20 Fax: +43 (0) 2252 / 488 60 E mail: office@geva.at

BELGIUM Getronics Industrial Automation B.V. Pontbeeklaan 43 B-1731 Asse-Zellik

Phone: +32 (0) 2 / 467 17 51 Fax: +32 (0) 2 / 467 17 45 E mail: infoautomation@getronics.com

TELECON CO. BULGARIA 4, A. Ljapchev Blvd. BG-1756 Sofia Phone: +359 2 / 97 44 05 8 Fax: +359 2 / 97 44 06 1

E mail: AutoCont CZECHIA Control Systems s.r.o. Nemocnicni 12

CZ-702 00 Ostrava 2 Phone: +420 (0) 69 / 615 21 11 Fax: +420 (0) 69 / 615 21 12

E mail: louis poulsen

industri & automation Geminivei 32 DK-2670 Greve

Phone: +45 (0) 43 / 95 95 95 Fax: +45 (0) 43 / 95 95 91 E mail: lpia@lpmail.com

URHO TUOMINEN OY Hevoshaankatu 3 FIN-28600 Pori

Telefon: +358 (0) 2 / 550 800 Telefax: +358 (0) 2 / 550 8841 E mail: -

EUROPEAN REPRESENTATIVES

UTECO A.B.E.E. 5, Mavrogenous Str. GR-18542 Piraeus Phone: +30 (0) 1 / 42 10 050

Fax: +30 (0) 1 / 42 12 033 E mail: uteco@uteco.gr

MITSUBISHI ELECTRIC **IRELAND** EUROPE B.V. - Irish Branch Westgate Business Park **IRL-Dublin 24**

Phone: +353 (0) 1 / 419 88 00 Fax: +353 (0) 1 / 419 88 90 E mail: sales.info@meuk.mee.com

Getronics **NETHERLANDS** Industrial Automation B.V. **Control Systems**

Donauweg 10 NL-1043 AJ-Amsterdam Phone: +31 (0) 20 / 586 15 92 Fax: +31 (0) 20 / 586 19 27 E mail: infoautomation@getronics.com

MPL Technology SP. z.o.o POLAND ul. Wrocławska 53 PL-30011 Kraków

Phone: +48 (0) 12 / 632 28 85 Fax: +48 (0) 12 / 632 47 82 E mail: krakow@mpl.com.pl

INEA d.o.o. SLOWENIA Liublianska 80 SI-61230 Domžale Phone: +386 (0) 17 21 80 00 Fax: +386 (0) 17 24 16 72

E mail: inea@inea.si **ECONOTEC AG SWITZERLAND** Postfach 282

CH-8309 Nürensdorf Phone: +41 (0) 1 / 838 48 11 Fax: +41 (0) 1 / 838 48 12 E mail: info@econotec.ch

GTS Darülaceze Cad. No. 43A KAT: 2 TR-80270 Okmeydani-Istanbul Phone: +90 (0) 212 / 320 1640 Fax: +90 (0) 212 / 320 1649 E mail: -

MIDDLE EAST REPRESENTATIVE

SHERF Motion Techn. LTD ISRAEL Rehov Hamerkava 19 IL-58851 Holon Phone: +972 (0) 3 / 559 54 62 Fax: +972 (0) 3 / 556 01 82

EURASIAN REPRESENTATIVES

MITSUBISHI ELECTRIC RUSSIA EUROPE B.V. 12/1 Goncharnaya St, suite 3C RUS-109240 Móskow Phone: +7 (0) 95 / 915-8624/02 Fax: +7 (0) 95 / 915-8603

STC Drive Technique RUSSIA Poslannikov per., 9, str.1 RUS-107005 Moskow Phone: +7 (0) 95 / 786 21 00 Fax: +7 (0) 95 / 786 21 01

SRV - Printed in Germany