Service Manual
 TNC $415 \mathrm{~B} / 4.25$

11/06
i

Kundendienst/Service

* SERVICE MANUAL * TNC 415B / 425

Changes/Developments

We are constantly working on technical improvements of our products.
For this reason, details described in this manual may differ slightly from your control. In this case, please order a revised service manual from us.

Duplication

This manual is provided subject to the condition that no part of it shall be duplicated in any form without our prior consent.

Issue 11/2006

valid for the software versions
TNC 415B/425: NC Software 259 93* (Standard)
TNC 415F/425E: NC Software 259 94* (Export)
TNC 415B/425: NC Software 280 54* (Special Software)
TNC 415F/425E: NC Software 280 56* (Export)

Contents Service Manual TNC 415B/425

How to use this Service Manual
Minor Error Messages
Major Error Messages and their Causes
Hardware Components TNC 415B/425
Logic Unit LE 415B/425
Connector Designation and Pin Layout
Block Diagrams
Board Description
Grounding Diagrams TNC 415B/425
Power Supply1
Keyboard Unit TE 400/410
Visual Display Unit BC 110/B11
Encoders
Electric Handwheels13
14153D-Touch Probes16
Data Interfaces17
Machine Parameter List

SERVICE MANUAL TNC 415B/425

Page 1
Issue: 20.08.95

Table of Contents

Page

1. How to Use this Service Manual 3
2. Minor Error Messages 4
2.1 Causes of Minor Error Messages 5
3. Major Error Messages and their Causes 7
4. Hardware Components TNC 415B/425 16
5. Logic Unit LE 415B/425 17
5.1 Designation of the Logic Unit LE 415B/F 17
5.2 Designation of the Logic Unit LE 425/E 18
5.3 Hardware Components of the Logic Unit LE 415B/425. 19
6. Connector Designation and Pin Layout 20
6.1 Connectors on the Logic Unit LE 415B/425 20
6.2 Connectors on the PLC I/O Boards 28
6.3 Connectors on the Keyboard Units 39
6.4 Connectors on the Visual Display Units 43
7. Block Diagrams 45
8. Board Description 47
9. Grounding Diagram TNC 415/B 48
10. Power Supply 51
10.1 External Power Supply Requirements 51
10.2 Power Supply of the NC 53
10.3 Checking the Power Supply Unit 55
10.4 Power Supply of the PLC 58
10.5 Buffer Battery 61.1
11. Keyboard Unit TE 400/410 62
11.1 Overview 62
11.2 Checking the Keyboard Unit 64
12. Visual Display Unit BC 110/B 73
12.1 Overview 73
12.2 Checking the Visual Display Unit 73
13. Encoders 76
13.1 Error Messages for Axes with Analogue Speed Controller 76
13.2 Error Messages for Axes with Integral Digital Speed Controller 78
13.3 Electrical Inspection of an Encoder 80
14. Electronic Handwheels 81
14.1 Handwheel HR 130/330 81
14.2 Handwheel HR 332 82
14.3 Error Messages 83
Page
15. 3D-Touch Probes 84
15.1 Overview 84
15.2 Error Messages 85
16. Data Interfaces 87
16.1 Operating Modes of the Data Interfaces 87
16.2 Machine Parameters for the Data Interfaces 89
16.3 Error Messages 90
16.4 Wiring Diagrams of the Data Interfaces 95
17. Data Input and Output 97
17.1 Data Transfer Menu 97
17.2 Overview of Files for TNC 415B/425 99
17.3 External Data Output 99
17.4 Downloading External Data 110
18. Analogue Outputs 120
18.1 Specifications 120
18.2 Checking the Analogue Outputs 120
18.3 Switching Over the Position Display 124
18.4 Adjustment of the Feed Rate 125
18.5 Offset Adjustment 126
18.6 Oscilloscope Function 129
19. PLC Inputs and Outputs 133
19.1 PLC Inputs 133
19.2 PLC Outputs 133
19.3 Checking the PLC Inputs and Outputs 134
19.4 Diagnosis Possibilities in the PLC Mode 137
19.5 Compiling the PLC Program 142
19.6 Output "Control Ready for Operation" and Acknowledgement for Test " Control Ready for Operation " 143
20. Test Units 145
20.1 Test Unit for the PLC Inputs and Outputs 145
20.2 Universal Measuring Adapter 145
20.3 Encoder Diagnostic Set 147
21. Exchange Instructions 148
21.1 Important Notes 148
21.2 Exchanging the Logic Unit 154
21.3 Exchanging the Processor Board 156
21.4 Exchanging the CLP Board 158
21.5 Exchanging the PLC Graphics Board 161
21.6 Exchanging the Power Supply Unit 163
21.7 Exchanging the PLC I/O Boards 165
21.8 Exchanging the EPROMs 169
22. Machine Parameter List 170

1. How to Use this Service Manual

The service manual TNC 415B/425 can be used to diagnose, locate and eliminate errors on machine tools controlled by TNC.

In order to correctly judge the problems in an NC-controlled machine tool, fundamental knowledge of the machine tool and its drives as well as their interaction with the control and the measuring systems is required. Incorrect behaviour of the machine tool can also result from improper use of the control, NC-programming errors and incorrect or not properly optimized machine parameters.

For further information in this respect please refer to the

- Documentation of the machine tool manufacturer
- Operating Manual (HEIDENHAIN)
- Technical Manual (HEIDENHAIN).

The Technical Manual is not enclosed with every control. In general, it is only supplied to the machine tool manufacturer and is updated by HEIDENHAIN, Traunreut. Therefore, it is absolutely necessary to contact the machine tool manufacturer, if errors occur that are due to a machine parameter or to the interface of the control. Support will, however, also be provided by the HEIDENHAIN service department and agencies. Telephone numbers, addresses and telex/fax numbers can be found on the back side of the cover page and the back side of the service manual.

2. Minor Error Messages

TNC 415B/425 features a comprehensive integral monitoring system to avoid input and operation errors, to locate errors and technical defects of the entire equipment (TNC, measuring systems, machine tool, cables etc.). The monitoring system is a fixed component of the TNC hardware and software; it is always active when the control is switched on. If a technical defect or an operation error is detected, an error message in plain language is displayed on the screen.

To erase minor error messages, press
Further error messages are described in the

- Operating Manual TNC 407/415B/425
- Technical Manual TNC 407/415/425
- Documentation by the machine tool manufacturer
- Operating Instructions FE 401 B.

Error Message	Sec.
AXIS DOUBLE PROGRAMMED	15.2
START POSITION INCORRECT	15.2
TOUCH POINT INACCESSIBLE	15.2
RANGE EXCEEDED	15.2
OPERATING PARAMETERS ERASED	2.1
BAUD RATE NOT POSSIBLE	16.3
CYCL PARAMETER INCORRECT	15.2
FAULTY RANGE DATA	15.2
ROTATION NOT PERMITTED	15.2
DATA MEDIUM MISSING	16.3
DATA MEDIUM EMPTY	16.3
DATA MEDIUM WRITE-PROTECTED	16.3
LIMIT SWITCH <AXIS>	2.1
PLANE WRONGLY DEFINED	15.2
EMERGENCY STOP	19.6
EXT. IN-/OUTPUT NOT READY	16.3
ERR: 001	16.3
ERR: 002	16.3
ERR: 003	16.3
ERR: 004	16.3
ERR: 005	16.3
ERR: 006	16.3
ERR: 007	16.3
ERR: 010	16.3
ERR: 011	16.3
ERR: 012	16.3
ERR: 013	16.3
ERR: 014	16.3
ERR: 015	16.3
ERR: 016	16.3
ERR: 017	16.3
ERR: 018	16.3
ERR: 100	16.3
ERR: 101	16.3

Error Message	Sec.
ERR: 102	16.3
ERR: 103	16.3
ERR: 104	16.3
ERR: 105	16.3
ERR: 106	16.3
ERR: 107	16.3
ERR: 108	16.3
ERR: 109	16.3
PROGRAM DATA ERRONEOUS	16.3
WRONG OPERATING MODE	16.3
WRONG AXIS PROGRAMMED	15.2
HANDWHEEL?	14.3
HANDWHEEL DEFECTIVE	14.3
ME: TAPE END	16.3
SCALING FACTOR NOT PERMITTED	15.2
PLC PROGRAM NOT TRANSLATED	2.1
PLC: ERROR <00 to 99>	2.1
POSITIONING ERROR	2.1
PROGRAM INCOMPLETE	16.3
POWER INTERRUPTED	2.1
INTERFACE ALREADY ASSIGNED	16.3
RELAY EXT. DC VOLTAGE MISSING	19.6
STYLUS ALREADY IN CONTACT	15.2
PROBE SYSTEM NOT READY	15.2
EXCHANGE TOUCH PROBE BATTERY	15.2
TRANSFERRED VALUE ERRONEOUS X	16.3
TRANSFERRRED DATA INCORRECT X	16.3
TIME LIMIT EXCEEDED	15.2

SERVICE MANUAL TNC 415B/425

2.1 Causes of Minor Error Messages

OPERATING PARAMETERS ERASED

- With new and exchange controls, the machine parameters are always erased
- Defectike buffer batteries, accumulator or capacitor
- RAM error on the processor board
- Software exchanged

LIMIT SWITCH <AXIS>

- "Manual" Operating Mode

The preset software limit switch has been reached during traverse with the axis address keys.

- "Automatic" Operating Mode

The calculated position of the current block is beyond the software limit switch range or beyond the additional limit (set with the MOD function <AXIS LIMIT>). The positioning is not performed.

Machine Parameters for the Software Limit Switches

	$\mathbf{X}+$	$\mathbf{X}-$	$\mathbf{Y +}$	$\mathbf{Y}-$	$\mathbf{Z +}$	$\mathbf{Z -}$
Default setting	910.0	920.0	910.1	920.1	910.2	920.2
Activation via PLC 1)	911.0	921.0	911.1	921.1	911.2	921.2
Activation via PLC						

	IV+	IV-	$\mathbf{V +}$	V-
Default setting	910.3	920.3	910.4	920.4
Activation via PLC 1)	911.3	921.3	911.4	921.4
Activation via PLC				

${ }^{1)}$ PLC markers M 2816 and M 2817

POWER INTERRUPTED

- After a reset signal of the power supply (e.g. line voltage drops)
- Important machine parameters may have been changed
e.g. MP 210, MP 410.3, MP 730, MP 3240.1, MP 7210, MP 7310

POSITIONING ERROR

- The servo lag monitor set in the machine parameters 1410.X or 1710.X has responded.
(Check the run-in behaviour of the axis; readjust, if necessary.)

PLC PROGRAM NOT TRANSLATED

- After editing, the PLC program must be compiled (translated) anew.

PLC: ERROR 00
to
PLC: ERROR 99

marker	2924
to	
marker	

- Instead of PLC: ERROR 00 to 99 another dialogue may be displayed with customized PLC programs. For further information please contact your machine tool manufacturer.

NOTES

3. Major Error Messages and their Causes

The integrated monitoring system distinguishes between minor and gross errors. Gross errors are characterized by a blinking display (e.g. malfunctions of the encoders, of the drives and data processing errors).
If a gross error occurs, the control opens the contact "Control Ready for Operation". This causes an emergency stop of the machine tool.

By switching off the main switch or by pressing \square
the emergency stop state can be reset, provided that the error cause has been eliminated.

Display (blinking)	Error Cause
PROCESSOR CHECK ERROR YX	$X=0$ CRC sum control data incorrect 1 CRC sum machine parameters incorrect 2 Check sum NC-memory incorrect 3 Test plane incomplete / will not run 4 Crosstalk between data bits in RAM 5 Crosstalk between addresses in RAM 6 Stack overflow 7 CRC sum PLC program ASCII 8 CRC sum PLC program OP-Code 9 CRC sum test section A Software error B Wrong interrupt Differentiation with register Vo: 08 bus error OC 10 illegas instruction 14 division by 0 18 error output for CHK command (check range) 20 error output for TRAPV command (trap on overflow) 24 privilege infringement (supervisor command in the user mode) 28 emulator trap $2 C$ emulator trap 30 - 34 - 38 - $3 C$ interrupt vector not initialized 40 interrupt vector not initialized 44 interrupt vector not initialized 48 interrupt vector not initialized $4 C$ - 50 - 54 - 58 - $5 C$ - 60 false interrupt (with priority 0) $64-7 C$ interrupt auto-vector 4-7, $94-B C ~$ TRAP \#5 - \#15 $\$ 100-\$ 3 F C$

Display (blinking)	Error Cause
PROCESSOR CHECK ERROR YX	C Time slice overflow D Command stack overflow control loop Wrong command main processor Wrong display mode main processor Wrong boot command Verify error with boot command "load" Wrong supplementary command with boot command "test" J Boot logon not successful K EPROM comparison CLP L Wrong command CLP processor M Operating voltage beyond tolerance range N No PLC texts in PLC chip O Axis 4 and/or 5 paraxial with export version Inhibited software function activated (function without software enable module) Q TNC 415 without CLP or geometry CPU R The control attempted to start a PLC positioning (M2704 to M2708), a datum shift (M2716) or to switch the range (M2816 and M2817), although MP7440/bit 2 was set or MP3030 ≤ 1. $\begin{array}{\|ll} \mathrm{Y}=\quad \text { CPU number } \quad \begin{array}{l} 1=\text { main processor } \\ 2=\text { geometry processor } \\ \\ \\ 3=\text { CLP processor } \end{array} \end{array}$

If the error message PROCESSOR CHECK ERROR XY (XY = code; see above) comes up repeatedly, send the complete logic unit to HEIDENHAIN for repair. Please indicate the error message and the code.

Display (blinking)	Error Cause
ERROR IN PLC-PROGRAM XX	

1) Only active with compatibility mode TNC 355

Display (blinking)	Error Cause	
ERROR IN PLC-PROGRAM XX	23	Accumulators not loaded on "Open Parentheses" (an Al, ANI, OL, ONL, XONL command has been programmed, although neither the word nor the logic accumulator has been gated or loaded)
(continued)		
	24	Incorrect type of parentheses result (a different type has been calculated in the parentheses from that which was defined in the "Open Parentheses" command, i.e. logic instead of word or vice versa)
	25	Conditional jump with incorrect logic accumulator (a conditional jump has been programmed, although the logic accumulator does not contain a definite value)
	26	Empty CASE instruction

NOTES

Error Messages GROSS POSITIONING ERROR: Axes with Analogue Speed Controller

Display (blinking)	Error Cause
GROSS POSITIONING ERROR <AXIS> YA	Positioning (Servo Lag) Monitoring - Operation with feed forward control: position monitoring range exceeded (range defined in MP1420.X) - Operation with servo lag: servo lag monitoring range exceeded (range defined in MP1720.X) - Operation with gantry axes: positions of master and slave axes deviate by more than the value set in MP855.X. (displayed axis = slave axis)
GROSS POSITIONING ERROR <AXIS> YB	Monitoring of the Analogue Voltage Limit - The nominal voltage calculated by the control has reached its limit of $\pm 10 \mathrm{~V}(\pm 20 \mathrm{~V}$ for spindle). (only with feed forward control)
GROSS POSITIONING ERROR <AXIS> YC	Movement Monitoring - The path actually traversed in a certain time is less than $1 / 4$ of or more than $4 x$ the nominal value calculated by the control. (can be influenced via MP1140.x)
GROSS POSITIONING ERROR <AXIS> YD	Standstill Monitoring - The deviation from the nominal position of an axis in standstill has exceeded the value programmed in the machine parameter MP1110.x.
GROSS POSITIONING ERROR <AXIS> YE	Monitoring of the Offset Voltage - The offset voltage limit of 100 mV has been reached during an automatic offset adjustment with MP1220. (see section 18.5)

Error Location

When the error message GROSS POSITIONING ERROR is displayed, the error may be located in any element of the closed loop.
e.g.- Error in control (e.g. CLP board)

- Excessive offset voltage at the servo amplifier
- Incorrect speed adjustment at the servo amplifier
- Monitoring function of servo amplifier has responded (e.g. monitoring of current intensity)
- Electrical defect at the servo amplifier
- Mechanical error (bearing, spindle, guides)
- Excessive mechanical forces on a drive

Error Messages GROSS POSITIONING ERROR:

Axes with Integrated Digital Speed Controller

Display (blinking)	Error Cause
GROSS POSITIONING ERROR <AXIS> YA	Positioning (Servo Lag) Monitoring - Operation with feed forward control: position monitoring range exceeded (range defined in MP1420.X) - Operation with servo lag: servo lag monitoring range exceeded (range defined in MP1720.X) - Operation with gantry axes: positions of master and slave axes deviate by more than the value set in MP855.X. (displayed axis = slave axis)
GROSS POSITIONING ERROR <AXIS> YB	Monitoring of the Analogue Voltage Limit - The nominal voltage calculated by the control has reached its limit of $\pm 10 \mathrm{~V}(\pm 20 \mathrm{~V}$ for spindle). (only with feed forward control)
GROSS POSITIONING ERROR <AXIS> YC	Movement Monitoring - The difference between the path information of the position encoder (LS) and that of the speed encoder (ROD) has reached the tolerance limit defined in MP1970.x.
GROSS POSITIONING ERROR <AXIS> YD	Standstill Monitoring - The deviation from the nominal position of an axis in standstill has exceeded the value programmed in the machine parameter MP1110.x.
GROSS POSITIONING ERROR <AXIS> YE	Monitoring of the Offset Voltage - The offset voltage limit of 100 mV has been reached during an automatic offset adjustment with MP1220. (see section 18.5)
GROSS POSITIONING ERROR <AXIS> YF	Monitoring of the Integrated Digital Speed Controller - The monitoring limit of the integrated speed controller (MP1910.x) has responded.
	$\begin{array}{\|ll} Y=\text { CPU number } & \begin{array}{l} 1=\text { main processor } \\ 2 \end{array} \\ & =\text { geometry processor } \\ & =\text { CLP processor } \end{array}$

Error Location

When the error message GROSS POSITIONING ERROR is displayed, the error may be located in any element of the closed loop.
e.g.: - Error in control (e.g. CLP board)

- Excessive offset voltage at the servo amplifier
- Monitoring function of servo amplifier has responded
(e.g. monitoring of current intensity)
- Electrical defect at the servo amplifier
- Motor, tachometer, encoder or cabling defective
- Mechanical error (bearing, spindle, guides)
- Excessive mechanical forces on a drive

1) Instead of PLC: ERROR $00 \ldots 99$ another dialogue may be displayed with customized PLC programs. For further information, please contact your machine tool manufacturer.

CRC = Cyclic Redundancy Check (during data transfer)
If the error message CHECK SUM ERROR YX comes up repeatedly, send the complete logic unit to HEIDENHAIN for repair. Please indicate the check sum error.

4. Hardware Components TNC 415B/425

Component TNC	TNC 415 B	TNC 425

LOGIC UNIT LE 415 B/F ${ }^{6)}$

Id.No. 267223 -	x	

LOGIC UNIT LE 425/E ${ }^{6(7)}$

Id.No. 267214 -		x

VISUAL DISPLAY UNIT BC 110/B

Id.No. 260 520 -- (BC 110B)	x	x
Id.No. 254 740-(BC 110)	$x^{5)}$	$x^{5)}$

KEYBOARD UNIT TE 400

Id.No. $250517-$	\times	\times

KEYBOARD UNIT TE 410 (customized version)

Id.No. 258 645-	x	x
Id.No. 264 105-	x	x

PLC I/O BOARD PA 110 (option) 21

Id.No. 262651 -	x	x

PLC I/O BOARD PL 400 (option) ${ }^{11}$

Id.No. $255855-$	x	x

PLC I/O BOARD PL 405 (option) ${ }^{4)}$

Id.No. 26337121	x	x

PLC I/O BOARD PL 410 (option) ${ }^{31}$

Id.No. 263371 -	x	x

2) only digital part (64 PLC inputs / 32 PLC outputs)
3) only analogue part
${ }^{3)}$ version 01: 64 PLC inputs / 23 PLC outputs and analogue part
version 11: 64 PLC inputs / 23 PLC outputs, no analogue part
${ }^{4}$) only digital part: (32 PLC inputs / 16 PLC outputs)
4) superseded by BC 110B
${ }^{6}$ F/E: export versions of the controls (different software; hardware identical)
5) TNC 425: control with integral digital speed controller (see section 18.2)

5. LOGIC UNIT LE 415B/425
 5.1 Designation of the Logic Unit LE 415B/F

5.2 Designation of the Logic Unit LE 425/E

5.3 Hardware Components of the LOGIC UNIT LE 415B/425

Board Overview LE 415B/F

Board	TNC 415B/F		
	LE 415B/F	LE 415B/F	LE 415B/F
	$267223--$	$2672233-$	267 223 4-

PROCESSOR BOARD

ld.No. 26855301	x	x	x

PLC GRAPHICS BOARD

Id.No. 25795402	x	x	x
Id.No. 25795403^{*}			

CLP BOARD

Id.No. 27570501	x		
Id.No. 27570502		x	\times

Board Overview LE 425/E

Board	TNC 425/E				
	LE 425/E				
	267214 1-	267 214 2-	267214 3-	267 214 4-	267 214 5-

PROCESSOR BOARD

ld.No. 26855301	x	x	x	x	x

PLC GRAPHICS BOARD

Id.No. 25795402	x	x	x	x	x
Id.No. 25795403*					

CLP BOARD

Id.No. 26540101	x				
Id.No. 26892701		x			
Id.No. 27571101			x		
Id.No. 27571102				x	x

* +24 V supply voltage of the operating panel (routed via X 46) cannot be switched off with EMERG. STOP.

6. Connector Designation and Pin Layout
 6.1 Connectors on the LOGIC UNIT LE 415B/425

6.1.1 Connector Designation LOGIC UNIT LE 415B/425

LE 415B

Power Supply	CLP Board	PLC Graphics Board	Processor Board

CLP board
X1 = measuring system 1 (~)
X2 = measuring system 2 (~)
X3 = measuring system 3 (~)
X4 = measuring system 4 (~)
X5 = measuring system 5 (~)
X6 = measuring system S ()
$X 8=$ nominal value output $1,2,3,4,5, S$
$\mathrm{X} 12=$ triggering touch probe
X14 $=$ measuring touch probe
B = signal ground

PLC graphics board

X41 = PLC output
X42 = PLC input
X43 = visual display unit (BC)
X44 $=24 \mathrm{~V}$ power supply for PLC
X45 = TNC keyboard unit (TE)
X46 = machine operating panel
X47 = PLC I/O board

Processor board

X21 = RS-232-C data interface
X22 = RS-422 data interface
X23 = electronic handwheel
X31 $=24 \mathrm{~V}$ - power supply for NC

LE 425

CLP Board

X1 = encoder $1(\sim)$

PLC Graphics Board

X41 = PLC output
X42 = PLC input
X43 $=$ visual display unit (BC)
X44 = 24 V power supply for PLC
X45 = TNC operating panel (TE)
X46 = machine operating panel
X47 = PLC I/O interface

Processor Board

X21 $=$ V.24/RS-232-C data interface
X22 $=$ V.11/RS-422 data interface
X23 = electronic handwheel
X31 $=24 \mathrm{~V}$ - power supply for NC

6.1.2 Pin Layout: POWER SUPPLY LE 415B/425

X31 Power Supply (NC)

Lerminal stip (piuggadie) 2-pin

Pin No.	Assignment
1	+24 V
2	0 V

6.1.3 Pin Layout: CLP Board LE 415 B

X1,X2,X3,X4,X5 Encoders 1,2,3,4,5 (Position)

sinusoidal input,
current interface 7-16 A
flange socket with female insert (9-pin, Conei)

Pin No.	Assignment
1	$0^{\circ}+$
2	$0^{\circ}-$
5	$90^{\circ}+$
6	$90^{\circ}-$
7	$R P+$
8	$R P-$
3	+5 (Up)
4	0 V (Uusable comp.)
9	internal shield
housing	external shield $=$ housing

X8 Nominal Value Output 1,2,3,4,5,S

flange socket with female insert (15-pin, D-SUB)

Pin No.	Signal Designation
1	analogue output 1
3	analogue output 2
5	analogue output 3
7	analogue output 4
4	analogue output 5
8	analogue output spindle
9	OV analogue output 1
11	OV analogue output 2
13	OV analogue output 3
14	OV analogue output 4
6	OV analogue output 5
15	OV analogue output spindle
housing	external shield = housing
$2,10,12$	do not assign

X6 Spindle Encoder (Position)

square-wave encoder (TTL)
flange socket with female insert (12-pin, Conei)

Pin No.	Signal Designation
5	Ua 1
6	-Ua 1
8	Ua 2
1	-Ua 2
3	UaO
4	-Ua 0
7	-UaS
(2)	+5 V (sense)
12	+5 V (Up)
(11)	0 V (sense)
10	0 V (Uusable comp.)
9 (via spring)	shield = housing

X12 Touch Trigger Probe

flange socket with female insert
(15-pin, D-SUB)

Pin No.	Signal Designation
1	internal shield
3	standby
4	start
5	+15 V
6	+5 V (Up)
7	-battery warning
8	0 V (Uusable comp.)
9	trigger signal
10	-trigger signal 1)
2,11 to 15	not assigned

1) stylus at rest $=$ high level

X14 Measuring Touch Probe

flange socket with female insert (25-pin, D-SUB)

Pin No.	Assignment
17	$0^{\circ}+$
4	$0^{\circ}-$
16	$90^{\circ}+$
3	$90^{\circ}-$
14	$\mathrm{RP}+$
2	$\mathrm{RP}-$
15	+5 V
1	0 V
21	$0^{\circ}+$
8	$0^{\circ}-$
20	$90^{\circ}+$
7	$90^{\circ}-$
18	$\mathrm{RP}+$
6	$\mathrm{RP}-$
19	+5 V
5	0 V
25	$0^{\circ}+$
12	$0^{\circ}-$
24	$90^{\circ}+$
11	$90^{\circ}-$
22	$\mathrm{RP}+$
10	$\mathrm{RP}-$
23	+5 V
9	0 V
13	shield

6.1.4 Pin Layout: CLP Board LE 425

X1, X2, X3, X4, X5 Encoder 1, 2, 3, 4, 5

 (Position)sinusoidal input
current interface 7-16 A
flange socket with female insert (9-pin, D-SUB)

Pin No.	Assignment
6	$0^{\circ}+$
1	$0^{\circ}-$
8	$90^{\circ}+$
3	$90^{\circ}-$
9	$\mathrm{RP}+$
5	$\mathrm{RP}-$
7	+5 V (UP)
2	0 V (UN)
3	internal shield
housing	external shield $=$ housing

X8 Nominal Value Output 1, 2, 3, 4, 5, S see CLP board LE 415 B

X6 Spindle Encoder (Position)

square-wave input (TTL)
flange socket with female insert (15-pin, D-SUB)

Pin No.	Assignment
1	Ua1
9	-Ua 1
3	$\mathrm{U} a 2$
11	-Ua 2
14	Ua 0
7	-Ua 0
13	- UaS
12	+5 V sense
10	OV sense
4	+5 V (UP)
2	OV (Un)
$5,6,8,15$	not assigned
housing	external shield $=$ housing

X12 Touch Trigger Probe

see CLP board LE 415 B

X15, X16, X17, X18, X19 Encoder 1,2,3,4,5 (Speed)
sinusoidal input,
voltage interface 1Vpp
flange socket with female insert (15-pin, D-SUB)

Pin No.	Assignment
1	$\mathrm{~A}+$
9	$\mathrm{~A}-$
3	$\mathrm{~B}+$
11	$\mathrm{~B}-$
14	$\mathrm{R}+$
7	$\mathrm{R}-$
4	$+5 \mathrm{~V}(\mathrm{Up})$
2	$0 \mathrm{~V}(\mathrm{UN})$
(12)	+5 V sense
(10)	0 V sense
$5,6,8,13,15$	do not assign
housing	external shield $=$ housing

6.1.5 Pin Layout: PLC Graphics Board LE 415B/425

X44 Power Supply (PLC)

terminal strip (pluggable) 3-pin

Pin No.	Assignment
1	+24 V _A can be switched off via EMERG. STOP
2	+24 V cannot be switched off via EMERG. STOP
3	OV

X41 PLC Output

flange socket with female insert (37-pin, D-SUB)

Pin No.	Assignment
1	O0
2	O1
3	O2
4	O3
5	O4
6	O5
7	06
8	O7
9	O8
10	O9
11	O10
12	011
13	O12
14	O13
15	O14
16	015
17	016
18	017
19	O18
20	O19

Pin No.	Assignment
21	O20
22	021
23	O 22
24	O 23
25	O24 ${ }^{\text {2 }}$
26	O25 ${ }^{21}$
27	O26 ${ }^{21}$
28	O27 ${ }^{21}$
29	O28 ${ }^{21}$
30	O29 ${ }^{21}$
31	O30 ${ }^{21}$
32	do not assign
33	OV (PLC) ${ }^{1)}$
34	control ready for operation ${ }^{2)}$
35,36,37	+24V_A PLC ${ }^{31}$
housing	external shield

1) 0 V PLC reference potential for testing
2) cannot be switched off with ext. EMERG. STOP
3) +24 V _A PLC power supply for testing (can be switched off)

Pin No.	Assignment
1	10
2	11
3	12
4	I3 acknowledgement for test "control ready for operation"
5	14
6	15
7	16
8	17
9	18
10	19
11	110
12	111
13	112
14	113
15	114
16	115
17	116
18	117
19	118
20	119
21	120
22	121
23	122
24	123
25	124
26	125
27	126
28	127
29	128
30	129
31	130
32	131
33,34	do not assign
35,36,37	OV PLC ${ }^{1)}$
housing	external shield = housing

Pin No.	Assignınent
1	RL0
2	RL1
3	RL2
4	RL3
5	RL4
6	RL5
7	RL6
8	RL7
9	RL8
10	RL9
11	RL10
12	RL11
13	RL12
14	RL13
15	RL14
16	RL15 key matrix
17	RL16
18	RL17
19	RL18
20	SL0
21	SL1
22	SL2
23	SL3
24	SL4
25	SL5
26	SL6
27	SL7
28	RL19
29	RL20
30	do not assign
31	RL21
32	RL22 key matrix
33	RL23
34	spindle override (wiper)
35	feed override (wiper)
36	- 5V override potentiometer
37	OV override potentiometer
housing	external shield = housing

${ }^{1)}$ external reference potential for PLC supply
X43 Visual Display Unit (BC 110/B)

flange socket with female insert (15-nin, D-SUB)	
Pill No.	Assignmemt
$1,8,11$	GND
2 to $6,12,13$	do not assign
7	R signal
9	V SYNC
10	H SYNC
14	G signal
15	B signal

X46 Machine Operating Panel
tlange socket with temale insert (3/-pin, D-SUB)

Pin No.	Assignment
1	1128
2	1129
3	1130
4	1131
5	1132
6	1133
7	1134
8	1135
9	1136
10	1137
11	1138
12	1139
13	1140
14	1141
15	1142
16	1143
17	1144
18	1145
19	1146
20	1147
21	1148
22	1149
23	1150
24	1151
25	1152
26	O0 ${ }^{11}$
27	O1 ${ }^{11}$
28	O2 ${ }^{11}$
29	O3 ${ }^{11}$
30	O4 ${ }^{11}$
31	O5 ${ }^{11}$
32	O6 ${ }^{11}$
33	O7 ${ }^{11}$
34	$0 \mathrm{~V}(\mathrm{PLC})^{2)}$
35	$0 \mathrm{~V}(\mathrm{PLC})^{2)}$
36	+ 24V PLC ${ }^{31}{ }^{4)}$
37	+ 24V PLC ${ }^{31}{ }^{4)}$

X47 PLC Expansion Interface
TZV interface
flange socket with male insert(25-pin, D-SUB)

Pin No.	Assignment
$1,2,3$	$0 \mathrm{~V}^{*} 1$
4	serial IN 2
$5,6,17,18$	not assigned
7	-RESET
8	- -WRITE EXTERN
9	WRITE EXTERN
10	- O5
11	- O3
12	- O1
13	shield
$14,15,16$	$+12 V^{*} 1$
19	serial IN 1
20	EMERGENCY STOP
21	- serial OUT
22	serial OUT
23	- O4
24	- O2
25	- O0

1) $00 . . .07$ simultaneously at X 21 (PLC output)
2) OV PLC reference potential for testing
3) +24 V PLC supply voltage routed via fuse for the inputs 1128 to 1152
4) PLC board version 01/02: + 24V_A can be switched off PLC board version 03: +24 V cannot be switched off

6.1.6 Pin Layout: Processor Board LE 415B/425

X21 V.24/RS-232 Data Interface

tlange socket with temale insert (25-pin, D-SUB)

Pin No.	Assignment
1	shield
2	RxD
3	TxD
4	CTS
5	RTS
6	DTR
7	GND (0 V $\left.{ }^{*} 2\right)$
8 to 19	not assigned
20	DSR
21 to 25	not assigned
housing	external shield $=$ housing

Pin No.	Assignment
1	shield
2	RxD
3	CTS
4	TxD
5	RTS
6	DSR
7	DTR
8	GND
9	-RxD
10	-CTS
11	-TxD
12	-RTS
13	-DSR
14	-DTR
15	do not assign

X23 Handwheel Interface (serial)

flange socket with female insert (9-pin, D-SUB)

Pin No.	Assignment HR 130/330	Assignment HR 332
$1,3,5$	not assigned	not assigned
4	+12 V	+12 V
2	0 V	0 V
6	DTR	DTR
9	not assigned	not assigned
8	RXD	RXD
7	do not assign	TXD
housing	external shield = housing	external shield = housing

6.2 Connectors on the PLC I/O Boards

6.2.1 Connectors on PL 400

6.2.2 Pin Layout: PL 400

X1 Pin No.	Assignment as 1. PL	as 2. PL
1	O32	064
2	O33	065
3	O34	066
4	O35	067
5	O36	068
6	O37	069
7	O38	070
8	O39	071
9	O40	072
10	O41	073
11	O42	074
12	do not assign	

X4 Pin No.	Assignment as 1. PL	as 2. PL
1	I 26	I 254
2	I 74	I 202
3	I 73	I 201
4	I 72	I 200
5	I 71	I 99
6	I 70	I 998
7	I 69	I 97
8	I 68	I 96
9	I 67	I 95
10	I 66	I 94
11	I 65	I 93
12	I 64	I 92

X2 Pin No.	Assignment as 1. PL	as 2. PL
1	O43	075
2	O44	076
3	O45	077
4	O46	078
5	O47	079
6	O48	080
7	O49	081
8	O50	082
9	O51	083
10	O52	084
11	O53	085
12	do not assign	

X5 Pin No.	Assignment as 1. PL	as 2. PL
1	186	I 214
2	I 85	I 213
3	184	I 212
4	I 83	I 211
5	I 82	I 210
6	181	I 209
7	I 80	I 208
8	I 79	I 207
9	I 78	I 206
10	I 77	I 205
11	I 76	I 204
12	I 75	I 203

X3 Pin No.	Assignment as 1. PL	as 2. PL
1	054	086
2	055	087
3	$056{ }^{11}$	$088{ }^{11}$
4	$057{ }^{11}$	$089{ }^{11}$
5	$058{ }^{11}$	$090{ }^{11}$
6	$059{ }^{11}$	$091{ }^{11}$
7	O60 ${ }^{11}$	$092{ }^{11}$
8	O61 ${ }^{11}$	$093{ }^{11}$
9	O62 ${ }^{11}$	$094{ }^{11}$
10	control ready for operation	
11	do not assign	
12	+24 V cannot be switched off via ext. EMERG. STOP	

X6 Pin No.	Assignment as 1. PL	as 2. PL
1	I 98	I 227
2	I 97	I 226
3	I 96	I 225
4	I 95	I 224
5	I 94	I 223
6	I 93	I 221
7	I 93	I 220
8	I 91	I 219
9	I 90	I 218
10	I 89	I 217
11	I 88	I 216
12	I 87	I 215

[^0]| $\begin{array}{\|l\|} \hline \text { X7 } \\ \text { Pin No. } \end{array}$ | Assignment as 1. PL | as 2. PL |
| :---: | :---: | :---: |
| 1 | 1110 | 1238 |
| 2 | 1109 | 1237 |
| 3 | 1108 | 1236 |
| 4 | 1107 | 1235 |
| 5 | 1106 | 1234 |
| 6 | 1105 | 1233 |
| 7 | 1104 | 1232 |
| 8 | 1103 | 1231 |
| 9 | 1102 | 1230 |
| 10 | 1101 | 1229 |
| 11 | 1100 | 1228 |
| 12 | 199 | 1227 |

X8 Pin No.	Assignment as 1. PL	as 2. PL
1	I 22	I 250
2	I 121	I 249
3	I 120	I 248
4	I 19	I 247
5	I 18	I 246
6	I 117	I 245
7	I 116	I 244
8	I 115	I 243
9	I 14	I 422
10	I 113	I 241
11	I 112	I 240
12	I 111	I 239

X9 Pin No.	Assignment as 1. PL	as 2. PL
1	do not assign	
2	do not assign	
3	do not assign	
4	1125	1253
5	1124	1252
6	1123	1251

X10 Connection to LE or to 1. PL	
Pin No.	Assignment
$1,2,3$	0 V
4	serial IN 2
$5,6,17,18$	not assigned
7	-RESET
8	- -WRITE EXTERN
9	WRITE EXTERN
10	- O5
11	- O3
12	- O1
13	shield
14,15	+12 V
16	board ID (PK)
19	serial IN 1
20	control ready for operation
21	- SERIAL OUT
22	SERIAL OUT
23	- O4
24	- O2
25	- O0

X11 Connection of 2. PL or PA

Pin No.	Assignment
$1,2,3$	OV
$4-6,14-18$	do not assign
7	-RESET
8	- WRITE EXTERN
9	WRITE EXTERN
10	- O5
11	- -O3
12	- O1
13	shield
19	serial IN 2
20	control ready for operation
21	- serial OUT
22	serial OUT
23	- O4
24	- O2
25	- O0

6.2.3 Connectors on PL 405

6.2.4 Pin Layout: PL 405

X1 Connection to Logic Unit or to 1. PL	
Pin No.	Assignment
$1,2,3$	OV
5.6 .17 .18	do not assign
4	serial IN 2
7	-RESET
8	WRITE EXTERN
9	- WRITE EXTERN
10	- -O5
11	- O3
12	- O1
13	shield
14,15	+12 V
16	board ID (PK)
19	serial IN 1
20	control ready for operation
21	-serial OUT
22	serial OUT
23	-O4
24	-O2
25	-O0

X3 PLC Inputs

Pin No.	Assignment as 1. PL	as 2. PL
1	I 64	I 92
2	I 65	I 193
3	I 66	I 194
4	I 67	I 95
5	I 68	I 196
6	I 69	I 97
7	I 70	I 98
8	I 71	I 199
9	I 72	I 200
10	I 73	I 201
11	I 74	I 202
12	I 75	I 203
13	I 76	I 204
14	I 77	I 205
15	I 78	I 206
16	I 79	I 207

X8 PLC Outputs

and "Control Ready for Operation"

Pin No.	Assignment as 1. PL	as 2. PL
1	O48	O80
2	O49	O81
3	O50	O82
4	O51	O83
5	O52	O84
6	O53	O85
7	O54	O86
8	O55	O87
9	O56	O88
10	O57	O89
11	O58	O90
12	O59	O91
13	O60	O92
14	O61	O93
15	O62	O94
16	control ready for operation	

X9, X10, X13, X14 PL 405 Power Supply			
Terminal	Assignment	as 1. PL	as 2. PL
X9	OV		
X10	+24 V- logic supply and "Control Ready for Operation"		
X13	+24 V- output supply	048-055	080-087
X14	+24 V- output supply	056-062	088-094

\mathbf{i}

6.2.6 Pin Layout: PL 410

X1 Connection to Logic Unit or to 1. PL	
Pin No.	Assignment
$1,2,3$	0 V
$5,6,17,18$	do not assign
4	serial IN 2
7	-RESET
8	-WRITE EXTERN
9	WRITE EXTERN
10	- O5
11	- O3
12	- O1
13	shield
14,15	+12 V
16	board ID (PK)
19	serial IN 1
20	control ready for operation
21	-serial OUT
22	serial OUT
23	-O4
24	-O2
25	-O0

X2 Connection of 2. PL or PA	
Pin No.	Assignment
$1,2,3$	0 V
$4-6,14-18$	do not assign
7	RESET
8	- WRITE EXTERN
9	WRITE EXTERN
10	- O5
11	- -O3
12	- O1
13	shield
19	serial IN 2
20	control ready for operation
21	-serial OUT
22	serial OUT
23	- O4
24	-O2
25	- O0

X3 PLC Inputs		
Pin No.	Assignment as 1. PL	as 2. PL
1	I 64	I 92
2	I 65	I 193
3	I 66	I 94
4	I 67	I 195
5	I 68	I 196
6	I 69	I 197
7	I 70	I 198
8	I 71	I 99
9	I 72	I 200
10	I 73	I 201
11	I 74	I 202
12	I 75	I 203
13	I 76	I 204
14	I 77	I 205
15	I 78	I 206
16	I 79	I 207

X4 PLC Inputs		
Pin No.	Assignment as 1. PL	as 2. PL
1	I 80	I 208
2	I 81	I 209
3	I 82	I 210
4	I 83	I 211
5	I 84	I 212
6	I 85	I 213
7	I 86	I 214
8	I 87	I 215
9	I 88	I 216
10	I 89	I 217
11	I 90	I 218
12	I 91	I 219
13	I 92	I 220
14	I 93	I 221
15	I 94	I 222
16	I 95	I 223

X5 PLC Inputs		
Pin No.	Assignment as 1. PL	as 2. PL
1	I 96	I 224
2	I 97	I 225
3	I 98	I 226
4	I 99	I 227
5	I 100	I 228
6	I 01	I 229
7	I 102	I 230
8	I 103	I 231
9	I 104	I 232
10	I 105	I 233
11	I 106	I 234
12	I 107	I 235
13	I 108	I 236
14	I 109	I 237
15	I 110	I 238
16	I 111	I 239

X6 PLC Inputs		
Pin No.	Assignment as 1. PL	as 2. PL
1	1112	1240
2	1113	1241
3	1114	1242
4	1115	1243
5	1116	1244
6	1117	1245
7	1118	1246
8	1119	1247
9	$1120{ }^{1 /}$	$1248{ }^{11}$
10	$1121{ }^{1 /}$	$1249{ }^{1 /}$
11	$1122{ }^{1 /}$	$1250{ }^{1 /}$
12	$1123{ }^{1 /}$	$1251{ }^{1 /}$
13	(124 ${ }^{1 /}$	$1252^{1 /}$
14	$1125^{1 /}$	$1253{ }^{1 /}$
15	$1126^{1 /}$	$1254{ }^{1 /}$
16	$1127^{1 /}$	$1255{ }^{1 /}$

X7 PLC Outputs		
Pin No.	Assignment as 1. PL	as 2. PL
1	O32	O64
2	O33	O65
3	O34	O66
4	O35	O67
5	O36	O68
6	O37	O69
7	O38	O70
8	O39	O71
9	O40	O72
10	O41	O73
11	O42	O74
12	O43	O75
13	O44	O76
14	O45	O77
15	O46	O78
16	O47	O79

X8 PLC Outputs and "Control Ready for Operation"		
Pin No.	Assignment as 1. PL	as 2. PL
1	048	080
2	049	081
3	050	082
4	051	083
5	052	084
6	053	085
7	054	086
8	055	087
9	056	088
10	057	089
11	058	090
12	059	091
13	060	092
14	$061{ }^{11}$	$093{ }^{11}$
15	O62 ${ }^{11}$	O94 ${ }^{11}$
16	control ready for operation	

[^1]| Terminal | Assignment | as 1. PL | as 2. PL |
| :---: | :---: | :---: | :---: |
| X9 | OV | | |
| X10 | +24 V- supply of LE and "Control Ready for Operation" | | |
| X11 | +24 V- output supply | O32-039 | 064-071 |
| X12 | +24 V- output supply | 040-047 | 072-079 |
| X13 | +24 V- output supply | 048-055 | 080-087 |
| X14 | +24 V- output supply | 056-062 | 088-094 |

X15 ${ }^{1)}$, X16 $^{1), ~ X 17 ~}{ }^{1), ~ X 18 ~}{ }^{1)}$ Analogue Inputs \pm 10V	
Pin No.	Assignment
1	voltage input $(\pm 10 \mathrm{~V})$
2	0 V
3	shield

Pin No.	Ass	gnment
1		constant current for PT 100
2	U+	measuring input
3		measuring input
4	I-	constant current for PT 100
5	shie	

Allocation of Analogue Inputs to Internal PLC Memory Addresses		
Input	Internal Memory Address	
	1. PL 410	2. PL 410
X15	W496	W464
X16	W498	W466
X17	W500	W468
X18	W502	W470
X19	W504	W472
X20	W506	W474
X21	W508	W476
X22	W510	W478

[^2]

6.2.8 Pin Layout: PA 110

X1 Connection to Logic Unit or	
1.PL	
Pin No.	Assignment
$1,2,3$	0 V
4	serial IN 2
$5,6,17,18$	do not assign
7	-RESET
8	- WRITE EXTERN
9	WRITE EXTERN
10	- O5
11	- O3
12	- -O1
13	shield
14,15	+12 V
16	board ID (PK)
19	serial IN 1
20	control ready for operation
21	-serial OUT
22	serial OUT
23	- O4
24	- O2
25	-O0

X2, X3, X4, X5 Analogue Inputs $\pm \mathbf{1 0 V}$ Pin No.	Assignment
1	voltage input $(+/-10 \mathrm{~V})$
2	0 V
3	shield

X6 PA 110 Power Supply	
Pin No.	Assignment
1	+24 V
2	0 V

X7, X8, X9, X10					
Thermistors					
Four-wire connector with const. current source					
Pin No.		Assignment	An 100		
:---:	:---	:---			
1	I+	constant current for PT100			
2	U+	measuring input			
3	U-	measuring input			
4	I-	constant current for PT100			
5	shield				

Allocation of Analogue Inputs to Internal PLC Memory Addresses		
Input	Internal Memory Address	
	PA as 1. expansion	PA as 2. expansion
X2	W496	W464
X3	W498	W466
X4	W500	W468
X5	W502	W470
X7	W504	W472
X8	W506	W474
X9	W508	W476
X10	W510	W478

6.3 Connectors on the Keyboard Units

6.3.1 Connectors on TE 400

4820 EKD 6084

6.3.2 Pin Layout: TE 400

X1 Connection of the Soft Keys of the VDU

Plug-type connector with female insert (9-pin)

Pin No.	Assignment
1	SLO
2	SL1
3	SL2
4	SL3
5	do not assign
6	RL15
7	RL14
8	RL13
9	RL12

X2 Connection to Logic Unit (LE)
flange socket with male insert (37-pin)

Pin No.	Assignment
1	RLO
2	RL1
3	RL2
4	RL3
5	RL4
6	RL5
7	RL6
8	RL7
9	RL8
10	RL9
11	RL10
12	RL11
13	RL12
14	RL13
15	RL14
16	RL15
17	RL16
18	RL17
19	RL18
20	SL0
21	SL1
22	SL2
23	SL3
24	SL4
25	SL5
26	SL6
27	SL7
28	SL19
29	SL20
30	do not assign
31	RL21
32	RL22
33	RL23
34	spindle override (wiper)
35	feed override (wiper)
36	+ 5V
37	OV

6.3.3 Connectors on TE 410

6.3.4 Pin Layout: TE 410

X1 Connection of the Soft Keys of the Logic Unit

flange socket with female insert (9-pin)

Pin No. \quad Assignment

1	SL0
2	SL1
3	SL2
4	SL3
5	do not assign
6	RL15
7	RL14
8	RL13
9	RL12

X2 Connection to the Logic Unit
flange socket with male insert (37-pin)

Pin No.	Assignment
1	RLO
2	RL1
3	RL2
4	RL3
5	RL4
6	RL5
7	RL6
8	RL7
9	RL8
10	RL9
11	RL10
12	RL11
13	RL12
14	RL13
15	RL14
16	RL15
17	RL16
18	RL17
19	RL18
20	SL0
21	SL1
22	SL2
23	SL3
24	SL4
25	SL5
26	SL6
27	SL7
28	RL19
29	RL20
30	do not assign
31	RL21
32	RL22
33	RL23
34	spindle override (wiper)
35	feed override (wiper)
36	+ 5 V
37	OV

X3 Connection to the Logic Unit

flange socket with male insert (37-pin)

Pin No.	Assignment
1	\| 128 unlock shelter door

2	1129 coolant ON/OFF
3	1130 spindle OFF
4	1131 NC OFF
5	1132 NC ON
6	\| 133 axis address key $X-1$) $X+2$)
7	I 134 axis address key $\mathrm{Y}-1$ 1) Z - 2)
8	I 135 axis address key Z - 1) Y - 2)
9	(136 axis address key $\mathrm{Z}+{ }^{1 /} \mathrm{Y}+2$)
10	\| 137 axis address key $Y+1$) $\mathrm{Z}+2$)
11	\| 138 axis address key $\mathrm{X}+1$ 1) X - 2)
12	1139 axis address key IV+
13	1140 axis address key IV-
14	1141 rapid traverse
15	1142 spindle ON
16	do not assign
17	do not assign
18	do not assign
19	1146 axis address key V+
20	1147 axis address key V-
21	I 148 spindle probing operation
22	do not assign
23	do not assign
24	do not assign
25	do not assign
26	do not assign
27	do not assign
28	do not assign
29	do not assign
30	do not assign
31	do not assign
32	do not assign
33	do not assign
34	do not assign
35	do not assign
36	+ 24V - PLC
37	+ 24V - PLC

[^3]
6.4 Connectors on the Visual Display Units

6.4.1 Connectors on the Visual Display Unit BC 110
 \square

6.4.2 Pin Layout: Visual Display Unit BC 110

X1 Connection to the Logic Unit
flange socket with male insert (15-pin)

Pin No.	Assignment
7	R analogue
9	V-SYNC
10	H-SYNC
11	OV
14	G analogue
15	B analogue

X3 Power Connection

Euro connector

X2 Connection of the soft keys to the Keyboard Unit
flange socket with male insert (9-pin)

Pin No.	Assignment
1	SL0
2	SL1
3	SL2
4	SL3
6	RL15
7	$R L 14$
8	RL13
9	$R L 12$

X4 DC Connection for Integral Fan
terminal strip (2-pin)

Pin No.	Assignment
1	+24 V
2	0 V

$\square=$ key matrix

6.4.4 Pin Layout: Visual Display Unit BC 110 B

X1 Connection to the Logic Unit

flange socket with male insert (15-pin)

Pin No.	Assignment
7	R analogue
9	V-SYNC
10	H-SYNC
11	0 V
14	G analogue
15	B analogue

X2 Connection of the Soft Keys to the Keyboard Unit
flange socket with male insert (9-pin)

Pin No.	Assignment
1	SL0
2	SL1
3	SL2
4	SL3
6	RL15
7	RL14
8	RL13
9	RL12

X3 Power Connection

terminal strip (3-pin)
Assignment as labelled

X4 Test Output

terminal strip (2-pin)

Pin No.	Assignment
+	6 V
-	0 V

TNC 425 Block Diagram

PLC Graphics Board

8. Board Description

LE 415B/425

PROCESSOR BOARD

- Interfaces

V.24/RS-232-C data interface
V.11/RS-422 data interface

HR 130/330 handwheel

- Monitoring function

EMERGENCY STOP

- Storage

Operating program (NC software)
PLC programs
Machine parameters
Compensation value lists
NC program (customized programs)

CLP BOARD

- Interfaces

Encoder inputs
3D touch probe

- Monitoring functions

Encoder inputs
Axis position
Program memory
Data processing
EMERGENCY STOP

PLC GRAPHICS BOARD

- Interfaces

57 PLC inputs
31 PLC outputs
Visual display unit
Keyboard unit
Machine operating panel
PLC I/O boards

- Monitoring functions

Temperature
Voltages
Buffer battery

\square																					

i

10. Power Supply

10.1 External Power Supply Requirements

The voltages must correspond to the following definitions:

${ }^{1)}$ Voltages up to $36 \mathrm{~V} \overline{ }$ are permissible with $\mathrm{t}<100 \mathrm{~ms}$.

10.1.1 NC Power Supply

The NC part of the LE must not be connected to the control voltage of the machine tool. It requires its own external power supply generated separately according to the German standard VDE 0551.
24 V DC voltage with a permissible AC component (ripple voltage) of 1.5 Vpp (recommended filtering capacitor $10000 \mu \mathrm{~F} / 40 \mathrm{~V}$ -).

10.1.2 PLC Power Supply

The PLC part (PLC inputs and outputs) of the LE, PL and PA is operated with a control voltage of 24 V - of the machine tool (generated according to VDE 0550).

The installation and connection of the measuring resistors and the analogue inputs (PL 410, PA 110) must be safe from contact according to VDE 0160 (section 5.5.1).
If this cannot be ensured, PLC and PL 410 (PA 110) have to be powered according to VDE 0551.
Superimposed AC voltage components arising from a non-controlled three-phase bridge connection with a ripple factor of 5% (see German standard DIN 40110/10.75, section 1.2) are permissible. Thus the highest absolute value for the upper voltage limit is 32.6 V ; the smallest value for the lower voltage limit is 18.5 V .

The OV line of the PLC power supply must be connected to
 the central signal ground (line $\varnothing \geq 6 \mathrm{~mm}^{2}$) of the machine tool. The ground connector on the PL410 housing must be connected to the protective ground (line $\varnothing \geq 6 \mathrm{~mm}^{2}$). To avoid ground loops the measuring voltage at the analogue inputs must not be grounded.

10.1.3 Power Supply of the Visual Display Units

BC 110

X1 = connection of logic unit
X2 = keyboard connection (for soft keys)

X3 $\boldsymbol{\text { a Line connection }}$		
Line voltage	$110 \mathrm{~V} \sim$	$220 \mathrm{~V} \sim$
Voltage range	$85 \ldots 132 \mathrm{~V} \sim$	$170 \ldots 264 \mathrm{~V} \sim$
Line fuse	F 3.15 A	F 3.15 A
Frequency	$49 \ldots 61 \mathrm{~Hz}$	
Power consumption	60 W	

X4 = DC connection for fan

Pin designation	Assignment
1	+24 V
2	0 V

BC 110B

X1 = connection of logic unit
X2 = keyboard connection (for soft keys)

X3 = Line connection		
Line voltage	$110 \mathrm{~V} \sim$	$220 \mathrm{~V} \sim$
Voltage range	$85 \ldots 132 \mathrm{~V} \sim$	$170 \ldots 264 \mathrm{~V} \sim$
Line fuse	T 2.0 A	T 2.0 A
Frequency	$49 \ldots 61 \mathrm{~Hz}$	
Power consumption	60 W	

X4 = Voltage output for testing	
Pin designation	Assignment
+	6 V
-	0 V

Note: The fan of BC 110B is supplied internally with +24 V .

10.2 Power Supply of the NC

The power supply line of the NC is connected to the terminals of X 31 .

X31 NC power supply

Pin No.	Assignment
1	+24 V
2	0 V

The different voltages for the LE are transformed from the voltage fed $(+24 \mathrm{~V})$ in the POWER SUPPLY assembly (see block diagrams in section 10.2.1).

The input and output voltages are displayed by LEDs. The states of the individual voltages are only displayed approximately by the LEDs. The exact values must be measured; the measured values must correspond to the table in section 10.2.1.

10.2.1 NC Power Supply: Block Diagram

X2: connector (12-pin) of connecting cable "power supply <-> processor board"
X1: socket (12-pin) on processor board

Voltage Table

Test point on power supply board	Reference point on power supply board	Output	Unom [V]	Umin [V]	Umax [V]	Inom [A]
LH22	LH24 (0V)	+5V (UP)	+ 5.05	+ 5.00	+ 5.10	2.5
LH20	LH24 (0V)	+ 12V	+ 12	+ 11.4	+ 12.6	0.1
LH18	LH24 (0V)	+15V	+ 15.0	+ 14.4	+ 15.6	0.15
LH14	LH24 (0V)	-15V	- 15.0	- 14.4	- 15.6	0.08
LH10	LH24 (0V)	+ Ubatt	+ 4.5	+ 3.9		approx. $20 \mu \mathrm{~A}$
LH1	LH3 (0V*1)	+ 5V * 1^{11}	+ 5	+ 4.75	+ 5.25	0.3

1) potential-free voltage
2) reset ULmax $=0.4 \mathrm{~V}$, UHmin $=3.9 \mathrm{~V}$

10.3 Checking the Power Supply Unit

Two low-voltage fuses are located on the POWER SUPPLY assembly. The fuse F 2.5 A protects the output voltage of +24 V BE (not required for TNC $415 \mathrm{~B} / 425$), and the fuse F 4.0 A protects the remaining voltages (see block diagram in section 10.2.1). If an error occurs in the power supply (all voltages missing), first check the +24 V at the supply line (2-pin terminal strip X31) and then the low-voltage fuse F 4.0A.

The voltages can be measured directly on the power supply board, the processor board and the CLP board (sections 10.3.1 and 10.3.2).
The values and their tolerances can be seen from the corresponding tables. If the measured values deviate distinctly from the values in the table, the power supply assembly is defective.

10.3.1 Test Points on the Power Supply Board

Voltage Table

Page 57
Issue: 20.08.95

10.3.2 Test Points on the Boards

Processor board TNC 415B/425 Id.No. 268553 --

\mathbf{i}

10.4 Power Supply of the PLC

The power supply line for the internal PLC of LE 415B/425 is connected to the terminal strip X44.

X44 PLC power supply of LE 415B/425
Terminal strip (pluggable) 3-pin

Pin No.	Assignment
1	+24 V_A, can be switched off via EMERGENCY STOP
2	+24 V, cannot be switched off via EMERGENCY STOP
3	0 V

Fuses: F1: 3.15A (+ 24V_A, can be switched off)
F2: 1.0A (+ 24 V , cannot be switched off)

The PLC power supply of PL 400, PL 405, PL 410 or PA 110 is connected to the following terminal strips:
Power supply of PA 110

Pin No.	Assignment
1	+24 V - can be switched off via EMERGENCY STOP
2	0 V

Power supply of PL 400

Terminal	Assignment
$\times 13$	+24 V can be switched off via EMERGENCY STOP
$\times 12$	0 V
$X 3$, pin 12	+24 V _A cannot be switched off via EMERGENCY STOP

Power supply of PL 405 / 410

X9, X10, X11, X12, X13, X14
 Power supply of PL

Terminal	Assignment	$1 . \mathrm{PL}$	$2 . \mathrm{PL}$
X9	OV		
X10	+24 V - logic unit and "control ready for operation"		
X11 1)	+24 V - logic unit for outputs	O32-O39	O64-O71
X12 1)	+24 V - logic unit for outputs	O40-O47	O72-O79
X13	+24 V - logic unit for outputs	O48-O55	O80-O87
X14	+24 V - logic unit for outputs	O56-O62	O88-O94

Fuse: - F2: T1A (+ 24V- supply for logic unit)

1) not with PL 405

10.4.1 PLC Power Supply: Block Diagram

${ }^{1)}$ can be powered with 24 V or $24 \mathrm{~V} _\mathrm{A}$
X44 Pin 1, +24V_A (PLC can be switched off): power supply for the PLC outputs O0-O23.
X44 Pin 2, +24 V (PLC cannot be switched off): power supply for the PLC outputs O24-O30 and output "control ready for operation"; power supply for PLC graphics board.

10.4.2 Test Points on the PLC Graphics Boar

10.5 Buffer Battery

The buffer battery is the voltage source for the program memory when the machine tool is switched off.

If the error message

EXCHANGE BUFFER BATTERY

is generated, the batteries must be exchanged within one week.

The buffer batteries are located behind a screw fitting in the power supply of the LE. To exchange the batteries, open the LE by undoing the snaps.

In order to protect the program memory of TNC 415B/425, a capacitor (on the processor board) is used in addition to the batteries. Thus, the line voltage may be switched off during battery exchange.
Without the batteries the capacitor is capable of maintaining the memory contents for about one day.

3 AA-size batteries
leak-proof
IEC designation "LR6"

The capacitor is only being charged when the TNC
is switched on.
capacitor

11. Keyboard Unit TE 400/410
 11.1 Overview

TE 400 Id.No. 250517 ..

TE 410 Id.No. 258645 ..

Version 01 (without protective frame)	Version 03 (with protective frame)
	V_{+}
$\underset{\sim}{x} \underset{\rightarrow}{x} \underset{\rightarrow}{x}$	$\underset{\sim}{x}$
Version 02 (without protective frame))	Version 04 (with protective frame)
	$\mathrm{IV}_{+}, \mathrm{V}^{\prime}-1, \mathrm{Z}_{\mathrm{Z}}$
$\underset{\sim}{x} \underset{\rightarrow}{x}$	$\underset{\sim}{x} \underset{\rightarrow}{x}$
2- V - $\mathrm{Y}+\downarrow$ V- V -	\bar{z}
Version $\mathbf{0 5}$ (remaining keys as version 03) Version $\mathbf{0 6}$ (remaining keys as version 04)	
(remaining keys as version 01)	

Version 01	Version 02
V_{+}	IV_{+}
$\underset{\sim}{x}$	
-	Z-V
Version $\mathbf{0 3}$ (remaining keys as version 01)Version $\mathbf{0 4}$ (remaining keys as version 02)	
crocce	
Version $\mathbf{0 5}$ (remaining keys as version 03) Version $\mathbf{0 6}$ (remaining keys as version 04)	

11.2 Checking the Keyboard Unit

The keyboard unit can be checked fast and reliably with the measuring adapter.

11.2.1 Checking the Key Functions

Proceeding:

Observe the safety instructions!

- Switch off the main switch.
- Disconnect the keyboard unit from the LE and connect the measuring adapter (see section 20) to the keyboard unit.
Now the contacts of the keys can be measured at the measuring adapter with an Ohmmeter.

If e.g.
is pressed at the TNC operating panel, approx. 1Ω can be measured at the adapter between PIN 8 and PIN 24 (see key matrix, section 11.2.3 and 11.2.4); consider the resistance of the testing wires.

11.2.2 Measuring Setup for Checking the Functions of the NC-Keys

11.2.3 Key Matrix of the Keyboard Unit

X2 Pin	1	2	3	4	5	6	7	8	9	17	18	19	28	29	31	32	20	21	22	23	24	25	26	27
Key	RLO	1	2	3	4	5	6	7	8	16	17	18	19	20	21	22	SLo	1	2	3	4	5	6	7
$!$										X							X							
\#										x								\mathbf{x}						
\$											X						X							
\%											X							x						
\wedge												X					x							
\&												X						x						
													x				x							
$($													X					X						
\bigcirc														\mathbf{X}			X							
														x				\mathbf{x}						
+															\mathbf{x}		\mathbf{x}							
$=$															\mathbf{x}			\mathbf{x}						
x																\mathbf{x}	x							
11										\mathbf{x}								\mathbf{x}						
Q										\mathbf{x}										x				
W											\mathbf{x}								X					
E											\mathbf{x}									\mathbf{x}				
R												\mathbf{x}							X					
												x								X				
													\mathbf{x}						x					
													\mathbf{x}							\mathbf{x}				
														\mathbf{x}					X					
O														\mathbf{x}						\mathbf{x}				
P															X				X					

	1	2	3	4	5	6	7	8	9	17	18	19	28	29	31	32	20	21	22	23	24	25	26	27
Key	RLO	1	2	3	4	5	6	7	8	16	17	18	19	20	21	22	SLO	1	2	3	4	5	6	7
$<$															X					X				
RET																\mathbf{x}			x					
CTRL										\mathbf{x}											\mathbf{x}			
A										X												X		
S											x										\mathbf{x}			
D											x											X		
F												\mathbf{x}									\mathbf{x}			
G												\mathbf{x}										x		
H													\mathbf{x}								\mathbf{x}			
J													x									x		
K														\mathbf{x}							\mathbf{x}			
L														\mathbf{x}								X		
;															X						\mathbf{X}			
$>$															x							x		
-																\mathbf{x}					\mathbf{x}			
SPACE										\mathbf{x}													x	
Z										\mathbf{x}														\mathbf{x}
X											x												X	
C											x													x
V												\mathbf{x}											X	
B												\mathbf{x}												x
N													\mathbf{x}										X	
M													X											\mathbf{x}
,														\mathbf{x}									x	

$\mathbf{X 2 ~ P i n ~}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 8}$	$\mathbf{2 9}$	$\mathbf{3 1}$	$\mathbf{3 2}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$
Key	RLO	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{s L o}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{5}$		\mathbf{x}																			\mathbf{x}			

11.2.4 Key Matrix of the VDU Keys

$\mathbf{X 1}$ Pin ${ }^{1)}$	4b	3b	2b	1b	1 a	2a	3a	4a
X2 Pin ${ }^{1)}$	13	14	15	16	20	21	22	23
Key ${ }^{2)}$	RL12	RL13	RL14	RL15	SLO	SL1	SL2	SL3
				\mathbf{x}		x		
SK1			X			X		
SK2		X				x		
SK3	X					X		
SK4				\mathbf{x}			x	
SK5			X				\mathbf{X}	
SK6		\mathbf{x}					X	
SK7	x						x	
SK8				X				\mathbf{x}
			\mathbf{x}					\mathbf{x}
22	x				x			
(2)		x			\mathbf{x}			

1) connector on keyboard unit
2) VDU key

X1: connector for flat cable VDU \Rightarrow keyboard unit (plug-type connector)
X2: connector for cable keyboard unit \Rightarrow logic unit (D-SUB, 37-pin)
SK = soft key (SK1...SK8 from left to right)

11.2.5 Checking the Potentiometers

Proceeding:

Observe the safety instructions!
Connect the measuring adapter to X 45 of the logic unit. Now the wiper voltages of the potentiometers can be measured with a multimeter.

Potentiometer	PIN	Voltage
override $\mathrm{F} \%$	$37=0 \mathrm{~V} / 35=+$ pot.	$(0$ to approx. 4.95)V V
spindle $\mathrm{S} \%$	$37=0 \mathrm{~V} / 34=+$ pot.	$(0$ to approx. 4.95)V

11.2.6 Measuring Setup for Checking the Potentiometers

multimeter

11.2.7 Machine Operating Panel of TE 410

The PLC inputs of the machine operating panel of TE 410 (I128-1148) can be tested at the flange socket X3 (37-pin) on the keyboard unit TE 410 or at the flange socket X 46 (connection of machine control panel) of the TNC 415B/425.

For this purpose the TABLE function (see section 19.4) in the PLC mode is helpful as well.

KEY of version		Flange socket X3 on KEYBOARD UNIT		$\begin{aligned} & \text { PLC } \\ & \text { Input } \end{aligned}$	KEY of version		Flange socket X3 on KEYBOARD UNIT		PLC Input
01/03	02/04	PIN	PIN		05/06	1)	PIN	PIN	
IV+	IV+	12	36.37	1139	(1)-0	0	3	36.37	1130
$z-1$	$\mathrm{Y}^{\prime}-\uparrow$	8	36.37	1135	[址	(0)	15	36.37	1142
${ }^{\mathrm{Y}_{ \pm}}$	$\xrightarrow{Z_{ \pm}}$	10	36.37	1117	\square	[込	21	36.37	1148
V+	V_{+}	19	36.37	1146	4	\square	1	36.37	1128
$\stackrel{\mathrm{X}^{\prime}+}{\stackrel{1}{¢}}$	$\stackrel{\text { x }}{\substack{\prime \\ \leftarrow}}$	11	36.37	1138	\cdots	H	2	36.37	1129
v	\sim	14	36.37	1141	NC 0	(NC	4	36.37	1131
$\xrightarrow{\mathrm{X}^{\prime}-}$	$\xrightarrow{\mathrm{X}_{+}^{\prime}} \xrightarrow{\rightarrow}$	6	36.37	1133	NC	NC 1	5	36.37	1132
$\stackrel{\mathrm{Y}}{\mathrm{Y}} \mathrm{L}$	Z-	7	36.37	1134					
$z+\downarrow$	$\mathrm{Y}^{\prime}+\downarrow$	9	36.37	1136	1) remaining versions				
IV-	IV-	13	36.37	1140	pin 36/37 $=+24 \mathrm{~V}$ _PLC				
V -	$\mathrm{V}-$	20	36.37	1147					

12. Visual Display Unit BC $110 / B$

12.1 Overview

12.2 Checking the Visual Display Unit

BC 110 B, Id.No. 26052001

If the screen remains dark when the machine is switched on, first check the power supply (line voltage) of the VDU. If the voltage supply is functioning properly, a square highlighted filed can be generated on the screen of the VDU (which must be switched on) by pressing the external test button on the back side of the unit.

If the VDU generates this highlighted field, the PLC graphics board in the logic unit is probably defective. If however, the VDU remains dark after the test button was pressed, the VDU is defective and must be exchanged.

BC 110, Id.No. 25474001

If the screen remains dark when the machine is switched on, first check the power supply (line voltage) of the VDU. The control signals for the screen can only be checked with an oscilloscope.

The following diagrams were generated with the VISUAL DISPLAY UNIT connected. Depending on machine parameters and image depicted, the colour signals R-analog, Y-analog and B-analog may differ from those on page 75.

X43 Visual Display Unit (BC 110)

flange socket with female insert (15-pin)

Pin No.	Assignment
$1,8,11$	GND
2 to $6,12,13$	do not assign
7	R signal
9	V SYNC
10	H SYNC
14	Y signal
15	B signal

Diagrams

${ }^{1}$ When measuring the colour signals directly at the output of the logic unit (without the VISUAL DISPLAY UNIT connected), the amplitudes are twice as large.

13. Encoders

13.1 Error Messages for Axes with Analogue Speed Controller

ENCODER <AXIS> DEFECTIVE YA

A = signal amplitude error

ENCODER <AXIS> DEFECTIVE YB

$B=$ signal frequency error

ENCODER <AXIS> DEFECTIVE YC

$C=$ error with distance-coded scales
$\begin{array}{ll}Y=\text { CPU number } \quad 1=\text { main processor } \\ 2 & =\text { geometry processor } \\ & 3=\text { CLP processor }\end{array}$

13.1.1 Error Causes

- Glass scale contaminated or damaged
- Scanning head contaminated or defective
- Cable damaged
- Encoder input of the logic unit (LE) defective

13.1.2 Error Location

In order to determine whether the encoder or the encoder input of the logic unit is defective, the encoders can be switched at the logic unit. For this purpose the corresponding machine parameters must be altered as well:

Function		MP	Entry Value
Allocation of the axes	X	110.0	$0=\mathrm{X} 1$
to the encoder inputs	Y	110.1	$1=\mathrm{X} 2$
	Z	110.2	$2=\mathrm{X} 3$
	IV	110.3	$3=\mathrm{X} 4$
	V	110.4	$4=\mathrm{X5}$
			$5=\mathrm{X} 6^{11}$

1) X 6 may be used for a machine axis, if no oriented spindle stop is required.

ENCODER X DEFECTIVE 3B

(Example)

13.2 Error Messages for Axes with Integral Digital Speed Controller

With the integral digital speed controller there are two encoder inputs for each axis:

Encoder inputs for the actual position:

encoder 1:
encoder 2:
encoder 3:
encoder 4:
encoder 5:
encoder S:
input X1
input X2
input X3
input X4
input $\times 5$
input X6

Encoder inputs for the actual speed:

encoder 1:
encoder 2:
encoder 3: encoder 4: encoder 5:

Therefore, there are two groups of error messages:
Monitoring of actual position capture ($\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \mathrm{X} 4, \mathrm{X} 5, \mathrm{X} 6$)

ENCODER <AXIS> DEFECTIVE YA

A = signal amplitude error, position encoder

ENCODER <AXIS> DEFECTIVE YB

$Y=C P U$ number
$B=$ signal frequency error, position encoder

ENCODER <AXIS> DEFECTIVE YC

C = error with distance-coded scales, position encoder
Monitoring of actual speed capture (X15, X16, X17, X18, X19)

ENCODER <AXIS>' DEFECTIVE YA

A = signal amplitude error, speed encoder

ENCODER <AXIS>' DEFECTIVE YB

$$
Y=C P U \text { number }
$$

$B=$ signal frequency error, speed encoder

ENCODER <AXIS>` DEFECTIVE YC

$C=$ error with distance-coded scales (speed encoder)

13.2.1 Error Causes

- Glass scale contaminated or damaged
- Scanning head contaminated or defective
- Cable damaged
- Encoder input of the logic unit (LE) defective

13.2.2 Error Location

In order to determine whether the one of the encoders of an axis or one of the encoder inputs on the logic unit is defective, the encoders can be switched at the logic unit. For this purpose the corresponding machine parameters must be altered as well (always change both parameters!):

Function		MP	Entry value
Allocation of the axes	X	110.0	$0=$ X1 (pos.) $/$ X15 (speed)
to the encoder inputs	Y	110.1	$1=$ X2 (pos.) $/$ X16 (speed)
	Z	110.2	$2=$ X3 (pos.) $\mathrm{X17}$ (speed)
	IV	110.3	$3=$ X4 (pos.) $/$ X18 (speed)
	V	110.4	$4=$ X5 (pos.) $/$ X19 (speed)
			$5=$ X61) (pos.)

[^4]
Flow-Chart for Error Location

ENCODER X DEFECTIVE 3B

(Example)

13.3 Electrical Inspection of an Encoder

In order to give a precise statement on the electrical function of an encoder, it must be measured with a phase angle measuring unit (PWM), an oscilloscope and a leak tester. (see operating instructions of encoder diagnostic set)

If no phase angle measuring unit is available, the electrical state of the cable, the lamp and the photocells of an encoder can be checked with an ohmmeter. The following resistances must be measured at the connector of the encoder:

Possible measurements at an encoder with current interface (7-16 A)

- encoder connector housing against machine chassis $<1 \Omega$ (external shield)
- encoder connector housing against PIN 9 (internal shield - external shield) $R=\infty$
- encoder connector housing against PIN 1 to PIN 8 (external shield - signal lines) $R=\infty$
- PIN 9 against PIN 1 to PIN 8 (internal shield - signal line) $R=\infty$
- pin 1 against pin 20°
- pin 2 against pin $1 \quad 0^{\circ} \quad$ (switch poles of ohmmeter)
- pin 5 against pin 690°
- pin 6 against pin 590°
- pin 7 against pin $8 \quad \mathrm{RP}^{1}$
- pin 8 against pin $7 \quad R P^{11}$
- pin 3 against pin $4^{2)}$
(approx. 5-30 Ω)

1) If encoders with selectable reference mark are used, different resistance values can be measured (or no resistance), depending on the type of activation.
2) The encoder check (pin 3 against pin 4) can only be carried out, if the encoder light unit is a lamp. If the encoder features an amplifier section, the light unit cannot be checked at all. With encoders with infrared diodes, a resistance in the conducting direction can be measured between pin 3 (+) and pin $4(-)$.

Basic Circuit Diagram with Sinusoidal Signals (7-16 \boldsymbol{A} A)

Encoders with square-wave signals can only be tested with a phase angle measuring unit (PWM).

14. Electronic Handwheels

14.1 Handwheel HR 130/330

HR 130
Id.No. 254040 --
HR 330
HR 130.001
Id.No. 249371 --
Id.No. 251534 --

Adapter cable for HR 330 Id.No. 249889 --

14.1.1 Checking the Handwheel HR 130/330

The serial handwheel HR 130 (without auxiliary keys) and HR 330 (with auxiliary keys) can be checked with an oscilloscope. The following signals can be measured at the handwheel input X23 of LE 415B/425. The signals have to correspond to the diagram below.

The supply voltage for the handwheel is fed via the logic unit (X 23 pin $2=0 \mathrm{~V}$, pin $4=+12 \mathrm{~V}$).

14.2 Handwheel HR 332

HR 332 Id.No. 266064 -- \quad Adapter cable | Id.No. 27455601 |
| :--- |
| (12-pin to 9-pin) |

14.2.1 Checking the Handwheel HR 332

The serial handwheel HR 332 can be checked with an oscilloscope. The following signals can be measured at the handwheel input X23 of LE 415B/425. The signals have to correspond to the diagram below.

The supply voltage for the handwheel is fed via the logic unit (X 23 pin $2=0 \mathrm{~V}$, pin $4=+12 \mathrm{~V}$).

14.3 Error Messages

HANDWHEEL?

- Data transfer (cable) has been interrupted
- Incorrect value entered in MP 7640.

HANDWHEEL DEFECTIVE

The light unit in the electronic handwheel is not emitting enough light, with the result that the signals in the handwheel become too small. An error signal is sent over the serial interface of the handwheel.

15. 3D-Touch Probes

15.1 Overview

15.1.1 Touch Probes with External Interface Electronics (APE)

TS 111 Id.No. 237400 --
Transmission via cable

APE 110 Id. No. 230465 -- for TS 111 APE 510 Id.No. 227590 -- for TS 511 APE 511 Id.No. 237586 -- for TS 511 with additional connector for a second SE 510

TS 511 Id.No. 237402 --

Infra-red transmission

15.1.2 Touch Probe with Integral Interface Electronics (APE)

TS 120 Id.No. 243614 --

Adapter cable for TS 120 Id.No. 244891 --

SERVICE MANUAL TNC 415B/425

15.2 Error Messages

15.2.1 Error Messages in the Probing Mode

TOUCH POINT INACCESSIBLE

- After the start of a probing function, the scanning point was not reached within the measuring range defined in the machine parameter MP6130.

EXCHANGE TOUCH PROBE BATTERY

- The battery voltage of the touch probe system with infrared transmission is below the minimum value.

STYLUS ALREADY IN CONTACT

- The stylus was already deflected when the probing function was started.

PROBE SYSTEM NOT READY

- The infrared transmission between the "Touch Probe" and the "Transmitter/Receiver Unit" is faulty (e.g. caused by contamination) or interrupted. The two windows of the touch probe system must be oriented to the transmitter/receiver unit.
- The battery is dead.
- The TM 110 is not connected.
- An error has been detected at one of the encoders of the TM110 (contamination).

15.2.2 Error Messages during Digitizing of 3D-Contours

WRONG AXIS PROGRAMMED

- The touch probe axis in the scanning cycle RANGE is not identical with the calibrated touch probe axis.

FAULTY RANGE DATA

- A MIN coordinate value in the scanning cycle RANGE is larger than or equal to the corresponding MAX coordinate value.
- One or more coordinates are beyond the limit switch range of the scanning cycle RANGE
- No scanning cycle RANGE was defined when calling the scanning cycles MEANDER or CONTOUR LINES.

MIRRORING NOT PERMITTED

ROTATION NOT PERMITTED

SCALING FACTOR NOT PERMITTED

- Mirroring, rotation or scaling factor were active when the scanning cycles RANGE, MEANDER or CONTOUR LINES were called.

SERVICE MANUAL TNC 415B/425

Page 86
Issue: 20.08.95

RANGE EXCEEDED

- The range has been exceeded during probing, i.e. a part of the 3D-contour is outside the range.

CYCL PARAMETER INCORRECT

- The programmed travel or the distance between lines or points is negative or larger than 56535 mm . (only possible with Q-parameter programming)

TOUCH POINT INACCESSIBLE

- The stylus was deflected before the range was reached during approach.
- In the cycle CONTOUR LINES, the stylus was not deflected within the probing range.

STYLUS ALREADY IN CONTACT

- The stylus is not at rest, although it is not touching the contour.

PLANE WRONGLY DEFINED

- One of the coordinates of the starting point in the cycle CONTOUR LINES is identical with the touch probe axis.

START POSITION INCORRECT

- The starting point coordinate that is identical with the starting probe-axis is beyond the range.

AXIS DOUBLE PROGRAMMED

- The same axis has been programmed for both starting point coordinates in the cycle CONTOUR LINES.

TIME LIMIT EXCEEDED

- In the scanning cycle CONTOUR LINES the first point of the scanned line was not reached within the programmed time limit.

STYLUS DEFLECTION EXCEEDS MAX.

- The stylus was deflected by more than the value programmed in the machine parameter MP6330 (TM110).

16. Data Interfaces

16.1 Operating Modes of the Data Interfaces

For data transfer the TNC 415B/425 can be switched to the following 6 interface modes:
ME: For connection of the HEIDENHAIN Magnetic Tape Unit ME 101/102 or other peripheral units (e.g. printer).

Data format and protocol adapted to ME!	
Protocol:	standard transfer
Data format:	7 data bits, 1 stop bit, even parity
Baud rate:	$110-2400$ Baud
Interface parameter:	fixed
Transmission stop:	DC3 (software handshake)

FE 1: For connection of the HEIDENHAIN Floppy Disk Unit FE 401 B (or the Floppy Disk Unit FE 401, from software 230626 03) or other peripheral units.

Data format and protocol adapted to FE 401/B!	
Protocol:	blockwise transfer
Data format:	7 data bits, 1 stop bit, even parity
Baud rate:	$110-38400$ Baud (FE 401B)
	9600 Baud (FE 401)
Interface parameter:	fixed
Transmission stop:	DC3 (software handshake)

FE 2: For connection of the HEIDENHAIN Floppy Disk Unit FE 401 or other peripheral units.

Data format and protocol adapted to FE 401/B!	
Protocol:	blockwise transfer
Data format:	7 data bits, 1 stop bit, even parity
Baud rate:	$110-38400$ Baud
	9600 Baud (FE 401)
Interface parameter:	fixed
Transmission stop:	DC3 (software handshake)

EXT 1:To adapt the transfer of data to external units in standard data format
EXT 2:and for blockwise transfer.

Protocol:	standard or blockwise transfer adaptation from machine parameter MP 5000 adaptation from machine parameter MP 5000
Data format:	$110-38400$ Baud
Baud rate:	Interface parameters : adaptation from machine parameter MP 5000
Transmission stop:	DC3 (software handshake) or RTS (hardware handshake) selectable as of MP5000

LSV/2: With the LSV/2 protocol several functions (such as file management, remote control and TNC diagnosis from a PC) can be performed with the appropriate software (TNC REMOTE or LSV/2 TOOLBOX).

16.1.1 Interface Configuration and Allocation of the Operating Modes

In the operating modes PROGRAMMING AND EDITING and TEST RUN the setup menu for the data

interfaces is called after pressing mod and the soft key	RS 232
RS	
RETUP	
SETUP	.

MANUAL OPERATION	PROGRAMMING AND EDITING							
RS 232	INTERFACE			RS422 INTERFACE				
MODE	OF OP.: LSU2			MODE OF OP.: FE 1				
BAUD	RATE			BAUD RATE				
FE	: 38400			FE: 9600				
EXT1	: 9600			EXT1 : 9600				
EXT2	: 9600			EXT2 : 9600				
LSU2	: 38400			LSU2 : 9600				
ASSIGN:								
PROGRAMMING: RS232				PRINT		: RS232		
PROGR	AM R	UN: RS	232	PRINT-TEST		: RS232		
TEST	RUN	: RS	232					
$0-$	$\begin{aligned} & \text { RS } 232 \\ & \text { RS } 422 \\ & \text { SETUP } \end{aligned}$	USER Parameter	HELP					END

On the left half of the screen the RS-232-C interface is configured, on the right half the RS-422-C. On the lower left of the screen the operating modes PROGRAMMING/EDITING, PROGRAM RUN and TEST RUN can be allocated to either RS-232-C or RS-422-C. (If the MOD function "RS 232/RS 422 SETUP" is called in the PLC editor or the MP editor, the editor can be allocated to one of the interfaces.)
On the lower right of the screen the user can define via PRINT or PRINT TEST, whether outputs with FN15 and digitized positions are to be output via one of the interfaces or into a file in the memory of the control.

- RS 232 means: Data are output via the data interface RS-232-C.
- RS 422 means: Data are output via the data interface RS-422-C.
- FILE means:

Data are filed in the TNC.

Note:

In the machine parameter MP5000 individual interfaces can be disabled.

\uparrow

With the arrow keys

\downarrow

(operating mode, baud rate, interface allocation) can be selected and set according to your requirements by
\square
ENS
pressing
To exit the MOD function RS 232/RS 422 SETUP, press the soft key

END

16.2 Machine Parameters for the Data Interfaces

In the operating modes ME, FE 1, FE 2 and LSV/2 the interface parameters cannot be changed.
In the operating modes EXT 1 and EXT2 the interface parameters can be set via machine parameter (starting with MP5000).

The detailed functions of the individual machine parameters please see from the "Technical Manual" or from the "Description of the Data Interfaces TNC 407/415" (Id.No. 275931 --).

16.3 Error Messages

16.3.1 Error Messages at the TNC in the ME Mode

WRONG OPERATING MODE

The wrong operating mode or no operating mode was selected on the external data medium.

WRONG PROGRAM DATA

Wrong program data have been detected during data transfer. The control attempted three times to read the data from the magnetic tape before interrupting the process.

DATA MEDIUM MISSING

No cassette has been inserted into the drive.

DATA MEDIUM EMPTY

No programs are stored on the data medium (cassette).

DATA MEDIUM WRITE-PROTECTED

The write-enable plug on the cassette is missing.

PROGRAM INCOMPLETE

Data transfer was interrupted before the program was transferred completely.

EXT. INPUT/OUTPUT NOT READY

The DSR-signal is missing at the TNC.

- ME not connected.
- Defective or wrong transfer cable.
- Wrong interface assignment.

ME: TAPE END

The cassette is full. To continue data transfer, turn over or exchange the cassette.

16.3.2 Error Messages at the ME

In the ME the electronics is tested, and the external operating conditions are checked. If an error is detected, the lamps of the operating mode display start blinking. In the following table the error types are listed:

○ LED off

* LED blinking

Indicator Lamp	Error Message
$\begin{aligned} & \text { OOO* } \\ & \text { OOOO } \end{aligned}$	Faulty data during transfer
$\begin{aligned} & \text { OO*O } \\ & \text { OOOO } \end{aligned}$	No cassette inserted
$\begin{aligned} & 00 * * \\ & 0000 \\ & \hline \end{aligned}$	Write-enable plug in cassette missing
$\begin{array}{r} 0 * 00 \\ 0000 \\ \hline \end{array}$	Wrong operating mode selected
$\begin{aligned} & \text { O*O* } \\ & \text { OOOO } \end{aligned}$	Data of magnetic tape faulty
$\begin{aligned} & 0 * * 0 \\ & 0000 \end{aligned}$	Magnetic tape empty
$\begin{aligned} & * 000 \\ & 0000 \end{aligned}$	
$\begin{aligned} & * 00 * \\ & 0000 \\ & \hline \end{aligned}$	
$\begin{aligned} & * O * O \\ & 0000 \\ & \hline \end{aligned}$	Errors in ME electronics
$\begin{aligned} & \text { *O* } \\ & \text { OOOO } \\ & \hline \end{aligned}$	
$\begin{aligned} & * * 00 \\ & 0000 \\ & \hline \end{aligned}$	
$\begin{aligned} & \text { * *O* } \\ & \text { OOOO } \end{aligned}$	
$\begin{aligned} & * * * * \\ & 0000 \end{aligned}$	End of tape
$\begin{aligned} & 0 * * * \\ & 0000 \end{aligned}$	Peripheral unit not connected
$\begin{aligned} & \text { ***O } \\ & 0000 \end{aligned}$	Data transfer between TNC and ME or peripheral unit was interrupted with

16.3.3 Error Messages at the FE in the ME-Mode

In the ME-mode, errors are displayed by blinking indicator lamps (LEDs).
○ LED off

- LED on
* LED blinking

Indicator Lamp	Error Message
$\begin{aligned} & \hline 000 \bullet \\ & 0 * 00 \end{aligned}$	Disk missing or error in the ME electronics
$\begin{aligned} & \hline \mathrm{OOO*} \\ & \mathrm{O} * \mathrm{OO} \\ & \hline \end{aligned}$	Disk cannot be formatted, as it is currently being used
$\begin{array}{r} \hline \mathrm{OOO} \\ \text { * } \mathrm{OOO} \\ \hline \end{array}$	Disk missing or not formatted
$\begin{aligned} & * O O * \\ & * O O O \\ & \hline \end{aligned}$	Disk cannot be copied, as a read/write process is active
$\begin{aligned} & \bullet \bullet * \bullet \\ & 0000 \\ & \hline \end{aligned}$	External unit not ready or not connected
$\begin{aligned} & \hline * 0 \bullet \bullet \\ & 0000 \\ & \hline \end{aligned}$	Disk missing or not formatted
	Disk missing or not formatted or no program available
$\begin{aligned} & \hline \text { *O•* } \\ & \text { OOOO } \end{aligned}$	Program cannot be output, as a transfer is active via the TNC interface
$\begin{aligned} & * O O * \\ & 00 \bullet 0 \end{aligned}$	Program cannot be output, as a transfer is active via the PRT interface
$\begin{aligned} & \hline 00 * \bullet \\ & \bullet 000 \end{aligned}$	External unit not ready or not connected
$\begin{array}{r} \hline \mathrm{OO} \mathrm{\bullet} \mathrm{\bullet} \\ \mathrm{*OOO} \\ \hline \end{array}$	Disk missing or not formatted
$\begin{aligned} & \hline \mathrm{OOOQ} \\ & * \mathrm{O} \bullet \mathrm{O} \end{aligned}$	Disk missing or not formatted
$\begin{aligned} & \hline \mathrm{OO} \mathrm{\bullet *} \\ & * 000 \\ & \hline \end{aligned}$	Program cannot be output, as a transfer is active via the TNC interface
$\begin{aligned} & \hline \mathrm{OOO*} \\ & \text { * } \mathrm{O} \bullet \mathrm{O} \\ & \hline \end{aligned}$	Program cannot be output, as a transfer is active via the PRT interface
$\begin{aligned} & \hline \mathrm{O} \mathrm{\bullet O} \mathrm{\bullet} \\ & \mathrm{OO} * \mathrm{O} \\ & \hline \end{aligned}$	External unit not ready or not connected
$\begin{aligned} & \hline \mathrm{O} * \mathrm{O}^{\circ} \\ & \mathrm{OO} \mathrm{\bullet O} \end{aligned}$	Disk missing or error in the ME electronics
$\begin{aligned} & \text { O*O* } \\ & \text { OO•O } \\ & \hline \end{aligned}$	Table of contents cannot be output, as a transfer is active via the PRT interface
$\begin{aligned} & \hline 000 * \\ & 00 \bullet 0 \\ & \hline \end{aligned}$	No interface coupling possible, as a transfer is active via the TNC interface
$\begin{aligned} & 00 \bullet * \\ & 0000 \\ & \hline \end{aligned}$	No interface coupling possible, as a transfer is active via the PRT interface
$\begin{aligned} & \text { OO*• } \\ & \text { OOOO } \\ & \hline \end{aligned}$	External unit not ready or not connected

By pressing
the error messages can be cleared.

16.3.4 Error Messages at the TNC in the FE Mode

In this operating mode, the floppy disk unit outputs errors in the following format:
(SOH) ERR: (SP) (SP) (SP) [XXX] (ETB) (BCC)
$X X X=$ error number
The following errors can be displayed on the screen:

Input/Output Errors

ERR: 001 = wrong command code
ERR: 002 = illegal program name
ERR: 003 = faulty data transfer
ERR: 004 = program incomplete
ERR: $005=$ receiving buffer overflow
ERR: 006 = function currently disabled
ERR: 007 = data-buffer overflow

Errors during Program Write or Read

ERR: 010 = program not on disk
ERR: 011 = program erase-protected
ERR: 012 = program is being written to
ERR: 013 = program directory is full
ERR: 014 = disk is full
ERR: 015 = text not found
ERR: 016 = program name already exists
ERR: 017 = disk access active
ERR: 018 = program currently being read

Disk / Drive / Controller Errors

ERR: $100=$ disk not initialized
ERR: 101 = sector number too large ${ }^{1)}$
ERR: 102 = drive not ready ${ }^{2)}$
ERR: 103 = disk is write-protected
ERR: 104 = faulty data on disk ${ }^{11}$
ERR: 105 = sector cannot be found ${ }^{1)}$
ERR: 106 = check sum incorrect ${ }^{11}$
ERR: 107 = disk controller defective ${ }^{3)}$
ERR: 108 = DMA defective ${ }^{3)}$
ERR: 109 = disk exchanged during program loading

[^5]
16.3.5 Error Messages during Data Transfer

TRANSFERRED VALUE ERRONEOUS X

$X=A \quad$ faulty character frame
B character overflow
C faulty character frame or character overflow
D parity error
E faulty character frame or parity error
F character overflow or parity error
G faulty character frame or character overflow or parity error
H receiving-buffer overflow
$\left.\begin{array}{l}\mathrm{K} \\ \mathrm{L}\end{array}\right\}$ \} incorrect ESC sequence (only in ME mode)

TRANSFERRED DATA INCORRECT X

$X=A \quad$ faulty character frame
D parity error
M control has received the character for "negative acknowledgement" (NAK) more than 3 times
N control has sent the character for "negative acknowledgement" (NAK) more than 3 times

BAUD RATE NOT POSSIBLE

If both data interfaces (RS 232 / RS 422) are activated simultaneously, the baud rates of both interfaces must be the same.

INTERFACE ALREADY ASSIGNED

A data interface cannot be used for two operating modes simultaneously. (e.g. DNC mode and programming at the same time is not possible with one data interface.)

EXT. IN-/OUTPUT NOT READY

- DSR signal at the TNC missing
- Defective or wrong transfer cable
- Wrong interface assignment

PROGRAM INCOMPLETE

Data transfer was interrupted before the program was completely loaded.

16.4 Wiring Diagrams of the Data Interfaces

16.4.1 RS-232-C Data Interface with RS-232-C Adapter Block (full wiring)

(al) If the pin layout of your peripheral unit differs from the above layout, the HEIDENHAIN connecting
cable may not be used. cable may not be used.

16.4-2 RS-232C Data Interface with RS-232C Adapter Block (simplified wiring)

Example:

[^6]The RS-232-C data interface has different pin layouts at the logic unit X21 and the RS-232-C adapter block.
16.4.3 RS-422 Data Interface
V.11-Adapter-Block

[^7]
17. Data Input and Output

17.1 Data Transfer Menu

In the operating mode PROGRAMMING/EDITING (press

STROM- UNTERBRECHUNG FEHLER	PROGRAMM-EINSPEICHERN/EDITIEREN						
TNC:				RS232/FE1:			
DATEI - NHME		BYTE	Status	DATEI-NAME		SEKTOREN	status
MmbI	. H	6	M	dREHUNG	. H	1	
x	. H	74		ECKE	. H	1	
xV	.H	86		FAKTOR	. H	1	
xvz	. H	98		425	. P	1	
XVZ1	.H	98					
TOOL	- ${ }^{\text {T }}$	1820	M				
v-24	. ${ }^{\text {T }}$	1820					
789	. P	108					
1	. D	5632					
TEST-PRO	. ${ }^{\text {a }}$	76	E				
10 DATEI (EN)	157440	BVTE	FREI	4 DATEI(EN)	759	SEKtoren	FREI

$\begin{gathered} \text { PAGE } \\ \overparen{乌} \end{gathered}$	$\begin{gathered} \hline \text { PAGE } \\ \sqrt{k} \end{gathered}$	$\begin{aligned} & \text { TRANSFER } \\ & \text { TNC } \Rightarrow \text { EXT } \end{aligned}$	$\begin{array}{\|c\|c\|} \hline \text { TRANSFER } \\ \text { TNC } \end{array}$	$\begin{array}{\|c\|c\|} \hline \text { TRANSFER } \\ \text { TNC } \end{array}$		$\begin{aligned} & \hline \text { WINDOU IN } \\ & \equiv \equiv \equiv \\ & \hline \end{aligned}$	$E N D$

On the left half of the screen the memory contents of the TNC is displayed; on the right half the memory contents of the peripheral unit.
The memory contents of the peripheral unit is only displayed automatically in the interface mode FE1. In all

To switch between the screen halves press the arrow keys

By switching the screen half the direction of data transfer is changed.

Explanation of the soft keys:

PAGE §	PAGE ת,	$\begin{gathered} \text { TRANSFER } \\ \text { TNC }_{\Rightarrow} \Rightarrow \text { EXT } \end{gathered}$	$\begin{aligned} & \text { TRANSFER } \\ & \stackrel{\text { TNC }}{\text { TNC }} \end{aligned}$		$\begin{gathered} \hline \text { SELECT } \\ \stackrel{\text { TVPE }}{\text { TVPE }} \end{gathered}$		END

TRANSFER
TNC \Rightarrow EXT

The program selected with
\uparrow

All programs are read in or out without confirmation.

All programs are read in or out after confirmation.

The following soft keys may be offered depending on the interface mode:

FE1 mode (external directory is loaded automatically):

	$\begin{aligned} & \text { SHOL } \\ & . . \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { SHOL } \\ & . . \mathrm{T} \end{aligned}$	$\begin{aligned} & \text { SHOL } \\ & . . \mathrm{I} \end{aligned}$	$\begin{aligned} & \text { SHOL } \\ & . . \mathrm{P} \end{aligned}$	$\begin{aligned} & \hline \text { SHOL. } \\ & . . \mathrm{D} \end{aligned}$	$\begin{aligned} & \hline \text { SHOL } \\ & . . \mathrm{A} \end{aligned}$	$E N D$

 All file types are displayed.

Only the files with this extension are displayed.
e.g. (. $\mathrm{H}=\mathrm{NC}$ program in HEIDENHAIN plain language)

FE2 / EXT1 / EXT2 mode:

SHOLJ EXT. DIRECTORY	$\begin{aligned} & \hline \text { SHOL. } \\ & . . \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline \text { SHOL. } \\ & . . \mathrm{T} \end{aligned}$	$\begin{aligned} & \hline \text { SHOL } \\ & . . \mathrm{I} \end{aligned}$	$\begin{aligned} & \text { SHOLI } \\ & . . \mathrm{P} \end{aligned}$	$\begin{aligned} & \hline \text { SHOL. } \\ & . . \mathrm{D} \end{aligned}$	$\begin{aligned} & \hline \text { SHOL. } \\ & . . \mathrm{A} \end{aligned}$	$E N D$

Only the files with this extension are displayed. e.g. (. $\mathrm{H}=\mathrm{NC}$ program in HEIDENHAIN plain language)

The external directory is loaded.

This soft key cancels the split screen display. Afterwards several settings can be made in the screen half selected before. After pressing the soft key once again, the screen is split again.

$\begin{gathered} \hline \text { PAGE } \\ \overparen{\rrbracket} \end{gathered}$	$\begin{gathered} \hline \text { PAGE } \\ \{, \end{gathered}$	$\begin{aligned} & \hline \text { SELECT } \\ & \text { ת } \\ & \hline \text { 事 } \end{aligned}$	$\begin{gathered} \mathrm{COPV} \\ \mathrm{ABC} \Rightarrow \mathrm{XVZ} \end{gathered}$		$\begin{aligned} & \text { WINDOU } \\ & \equiv \mid \equiv \equiv \end{aligned}$	END

17.2 Overview of Files for TNC 415B/425

Depending on the subordinate mode (NC, PLC MODE, MP MODE etc.) in which the transfer menu is activated, only certain file types are offered to be downloaded or output.

The following data may be in the RAM:

NC Memory Management	Extension (TNC)	Extension (external)
NC program: HEIDENHAIN language NC program: ISO Active tool file Tool data (table) Pocket number table Pallet table Datum table Text file (ASCII) Measuring point table (digitizing)	. H .1 TOOL.T . T . P .D . .PNT	H .D TOOL.T .T TOOL_P.R .L .N A U
PLC Memory Management (RAM)		
PLC program Error messages 1. language Error messages English Dialogues 1. language Dialogues English ASCII file Help texts Data for axis error compensation Data for axis error compensation	.PLC .ER1 .ERE .DI1 .DIE .A .HLP .COM .CMA	$\begin{aligned} & \text { P } \\ & \text { A } \\ & \text { I } \\ & \text { I } \end{aligned}$
Machine Parameter Mode		
Machine parameter lists	. MP	. M
Compensation value table selectable via code number	.KOR	. S

Additional information on the files or programs is provided by letters in the status field.
E: The file/program has been selected in the PROGRAMMING mode.
S: The file/program has been selected and activated in the TEST RUN mode.
M: The file/program has been selected and activated in either PROGRAM RUN / FULL SEQUENCE or in PROGRAM RUN / SINGLE BLOCK.
P : The file/program is protected against erasing and editing.
IN: The table/program was programmed in Inch.
W : The file/program was not completely transferred to an external memory and thus is no longer available.

17.3 External Data Output

Preparations:

- Connect the external data medium (FE, ME or other peripheral unit, e.g. personal computer with HEIDENHAIN data transfer software) to the TNC.
- Prepare the external data medium for data transfer:
- Select the operating mode, the baud rate and the interface assignment at the TNC (see section 16.1).

17.3.1 Output of Files with the Extensions .H, .I, .T, .D, .P, .A, .PNT

Press Key	Function
	$\hat{\rightharpoonup}$
	Operating mode PROGRAMMING/EDITING
Extry	Activate data transfer menu

The different file types are distinguished by the file name and the extension.
In the TNC there are the following six different file types that can be selected via soft key:

- HEIDENHAIN dialogue programs
- ISO programs
- Tool tables
- Datum tables
- Pallet tables
- Text files (ASCII)
- Point files

$$
\begin{aligned}
& \text { <file name> } . \mathbf{H} \\
& \text { <file name }>. \mathbf{I} \\
& \text { <file name > }>\text { 1) } \\
& \text { <file name }>. \mathbf{D} \\
& \text { <file name }>. \mathbf{P} \\
& \text { <file name }>. \mathbf{A} \\
& \text { <file name }>. \text { PNT }
\end{aligned}
$$

[^8]
17.3.2 Output of TOOL.T File (Active Tool Table) and of POCKET-TABLE

17.3.3 Output of the Machine Parameter List <NAME>.MP

NOTE:

The TNC only displays the external directory in the FE1 mode.

17.3.4 Output of the Compensation Value List for Multipoint Axis Error Compensation <NAME>.KOR

NOTE:

The TNC only displays the external directory in the FE1 mode.
Until NC software $25993 \times .07$ and $25994 \times .07$ the compensation values and the axis relations were filed in one table (file with extension .KOR). This file is stored in the RAM of the TNC and can be read out.

SERVICE MANUAL TNC 415B/425

Page 104
Issue: 20.08.95

NOTE:

The TNC only displays the external directory in the FE1 mode.
As of NC software $25993 \times .08$ and $25994 \times .08$ the compensation values and axis relations can be stored as files with the extensions .COM and .CMA.

[^9]
17.3.5 PLC File Management

The PLC is subdivided into two internal drives.
Drive TNC:
PLC files in RAM 1)
Drive TNC/EPROM: PLC files in PLC EPROM 1)

The following files may be stored:

PLC programs		.PLC
Error messages	1. language	.ER1
Error messages	English	.ERE
Dialogues	1. language	.DI1
Dialogues	English	.DIE
ASCII files		.A
Help texts	.HLP	
Data for axis error compensation	.COM	
Data for axis error compensation	.CMA	

For each half of the screen the required "drive" can be selected by soft key.

1) Between the PLC RAM and the PLC EPROM similar functions are possible as between the RAM and external data medium.

Selecting the Drives

MANUAL OPERATION ERROR	PLC PROGRAMMING							
TNC：	BYTES STATUS			TNC／EPROM： FILE NAPIE	BYTES STATUS			
FILE NAME								
252499 ${ }^{\text {A }}$		．PLC 14612	M	252499 X		C 12098	P	
3DT＿SCHA		－PLC 1560		4XXER1		11402	P	
AUX＿FUNK		．PLC 5298		4XXERE		E 1402	P	
BE＿STD＿Z		．PLC 2818		4XXDI 1		113154	P	
CLRPLCWI		．PLC 216		4XXDIE	．D	IE 2290	P	
CVCL＿FUK		＊PLC 1730						
EO＿MODUL	－	＊PLC 154						
HANDRAD		＊PLC 852						
HIRTH		．PLC 6152						
HR330		－PLC 1900						
HR332		－PLC 2276						
HRA110		－PLC 812						
40 FILE （S）	47616	16 BYTES UA	CANT	$5 \quad \mathrm{FILE}(\mathrm{S})$	106752	BYTES UACA		
$\begin{gathered} \text { PAGE } \\ 乌 \end{gathered}$	$\begin{gathered} \text { PAGE } \\ \{, \end{gathered}$					三三 ${ }^{\text {WINDOU }}$		ND

Press Key	Function
	Select the window to be modified
	Switch soft key row
MODIFY	Press soft key
W INDOU	

MANUAL OPERATION ERROR	PLC PROGRAMMING						
TNC:							
FILE NAME				BVIES STATUS			
$252499 \times$ A .PLC				14612	M		
3 T _SCHA . PLC							
AUX_FUNK . PLC				5298			
$B E _S T L_{-}$, PL				2818			
CLRPLCWI •PL				216			
CYCL_FUK			- PLC	1730			
EO_MODUL			. PLC	154			
HANDRAD			. PLC				
HIRTH			. PLC				
HR330			. PLC	1900			
HR332			. PLC	2276			
HRA110			. PLC				
40 FILE(S) 47		VTES UAC					
$\begin{gathered} \text { PAGE } \\ \grave{\leftrightharpoons} \end{gathered}$	$\begin{gathered} \text { PAGE } \\ \Omega, \end{gathered}$	$\begin{aligned} & \text { SELECT } \\ & \text { ת } \end{aligned}$	COPV	MODIFY WINDOW		$\begin{aligned} & \text { WINDOL } \\ & \equiv \equiv \equiv \end{aligned}$	END

Press Key	Function
SELECT $X \times X$	Assign the "drive" by pressing a soft key
END	Press soft key
	Switch soft key row back

17.3.6 Output of Files from PLC Memory

NOTE:

The TNC only displays the external directory in the FE1 mode.

Overview of the Files

PLC programs		.PLC
Error messages	1. language	.ER1 1)
Error messages	English	.ERE 1)
Dialogues	1. language	.DI1 1)
Dialogues	English	.DIE 1)
ASCII files		.A 1)
Help texts	HLP	
Files for axis error compensation	.COM 2)	
Files for axis error compensation	.CMA 2)	

1) Note:

The error messages, dialogues and ASCII files are output as ASCII files with the extension. A. Therefore, the files to be output must have different filenames so that they will not be overwritten on the external data medium.

> RENAME
> $A B C=X V Z$
(to rename a files, press the soft key .)

Note down filename and the extension!
After having downloaded the files, the extension. A must be reconverted to the original extension

$$
\begin{aligned}
& \text { CONVERT } \\
& \text { ABC } \Rightarrow X \mathrm{YZ}
\end{aligned}
$$

by pressing the soft key
-
2) see section 17.3.4

There may be several files with the same extension in RAM.
Note down status information (see section 17.2).

[^10]
17.4 Downloading External Data

Preparations:

- Connect the external data medium (ME, FE or other peripheral unit) to the TNC.
- Prepare the external data medium for data transfer:
press stop
and at the ME, press at the FE.
- Select the operating mode, the baud rate and the interface assignment (see 16.1) at the TNC.
17.4.1 Downloading files with the Extensions .H, .I, .D, .P, .T, .A

[^11]
17.4.2 Downloading TOOL.T Files (Active Tool Table) and the POCKET TABLE

Press Key

17.4.3 Machine Parameter Input <NAME>.MP

1) If several MP files are downloaded after each other, the TNC activates the MP list downloaded last.

When the error message

OPERATING PARAMETERS ERASED

is displayed, enter the machine parameter file <NAME>.MP as follows:
(see section 2.1)

| Press Key | Function |
| :--- | :--- | :--- |
| | Clear the error message |

17.4.4 Input of the Compensation Value List for Multipoint Axis Error Compensation <NAME>.KOR

NOTE:
The TNC displays the external directory only in the FE1 mode.
Until NC-software $25993 \times .07$ and $25994 \times .07$ the compensation values and the relations are filed in one table (file with extension .KOR).

Press key	Function
	TNC in operating mode PROGRAMMING AND EDITING. Prepare TNC for input of code number. Enter code number, confirm with ENT. Activate data transfer menu. Press arrow key to enter the directory of the external data medium. If necessary: select desired compensation value list by pressing an arrow key. Enter the file name of the compensation value list (ASCII or numerical keys). Start data transfer. Exit the data transfer menu. TNC in operating mode PROGRAMMING AND EDITING

SERVICE MANUAL TNC 415B/425

Page 115
Issue: 20.08.95

From NC-software 259 93x. 08 and 259 94x. 08 the compensation values and the relations can be stored in files with the extensions.COM and .CMA.

If there is no <NAME>.CMA file on the external data medium, the compensation value tables from the code number 105296 are valid. These files can be read in as described in section 17.4.4.

[^12]

17.4.5 Downloading PLC Program, Error Messages, Dialogues and Help Texts

NOTE:

The TNC displays the external directory only in the FE1 mode.
The error messages and the dialogues are downloaded as ASCII files (<NAME>.A). They need to be converted to their original file types afterwards.

After reading in the files, the error messages and dialogues need to be reconverted into their original file types.

Error messages	1. language:	<NAME>.A \Rightarrow	<NAME>.ER1
Error messages	English:	<NAME>.A \Rightarrow	<NAME>.ERE
Dialogues	1. language:	<NAME>.A \Rightarrow	<NAME>.DI1
Dialogues	English:	$<$ NAME $>$. $A \Rightarrow$	<NAME>.DIE

If the PLC program is run from RAM (MP $4010=1$) and several files of the type <NAME>.PLC are contained in RAM, the PLC program that had the status \mathbf{M} before it was transferred, must be loaded into the process memory. (see section 19.5)

If there are several dialogue or error message files in RAM, the desired file can be selected via soft key.

Press key	Function
\square	TNC in PLC menu.
$\begin{gathered} \hline \text { SELECT } \\ \bullet \text { DI } 1 / * \text { ER1 } \\ \text { FILES } \end{gathered}$	Press soft key.
	Select desired file.
SELECT ~事	Press soft key.
$E N D$	Press soft key.

18. Analogue Outputs

18.1 Specifications

6 outputs 1, 2, 3, 4, 5 and S
Load capacity: $\begin{aligned} & R_{\operatorname{Lmin}} \geq 5 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{Lmax}} \leq 2 \mathrm{nF}\end{aligned}$
Voltage range: $\quad U_{a m a x}= \pm 10 \mathrm{~V} \pm 100 \mathrm{mV}$

$$
U_{\text {amin }}=0 V \pm 3 \mathrm{mV}
$$

Machine parameters for the analogue outputs

Analogue outputs	MP	Entry values
X	120.0	$0=$ output 1
Y	120.1	$1=$ output 2
Z	120.2	$2=$ output 3
IV	120.3	$3=$ output 4
V	120.4	$4=$ output 5
		$5=$ output S

Resolution:	16 Bit $=65536$ steps
Smallest step	$\frac{10 \mathrm{~V}}{65536}=0.153 \mathrm{mV}$

18.2 Checking the Analogue Outputs

18.2.1 Axes with Analogue Speed Controller

Proportionally to the traversing speed, the control generates an analogue voltage of 0 V to 9 V (rapid traverse). The easiest way to determine this voltage is to connect the test adapter directly to the logic unit or to the connecting terminals of the servo-amplifiers and to measure with a multimeter.

If however, the axis does not move due to a defect, and you want to test whether the error is inside or outside the control, the following steps are recommended:

- Switch off the main switch at the machine tool.
- Connect the test adapter to the connector X8 (nominal value output) of the LE and connect a multimeter to the test adapter sockets for the defective axis. If no test adapter is available, connect a multimeter directly to the nominal value output of the servo-amplifier.
- Switch on the main switch and the control voltage.
- Switch the position display to LAG (servo lag) (see section 18.3).
- Check and adjust the following machine parameters:
(If you alter a machine parameter, note down the original value and enter it again after finishing the test.)

MP	Entry Value	Function	Original Value
$1410 . X$	$30[\mathrm{~mm}]$	Servo-lag monitoring (erasable), feed forward	
$1420 . X$	$30[\mathrm{~mm}]$	Servo-lag monitoring (EMERG. STOP), feed forward	
$1140 . X$	$9.99[\mathrm{~V}]$	Movement monitoring	
$1710 . X$	$300[\mathrm{~mm}]$	Servo lag monitoring (erasable), trailing mode	
$1720 . X$	$300[\mathrm{~mm}]$	Servo lag monitoring (EMERG. STOP), trailing mode	

- Traverse the reference points that need to be traversed before those of the defective axis.
- Turn the override potentiometer of the keyboard unit completely to the left and start reference mark traverse for the defective axis.
- Check the axis enable for the defective axis at the servo amplifier.
- Check the screen display.
* (Control ready for operation) must be ON, the \mathbf{F} of the feed rate display must be normally lit (if the display is inverse, the feed rate enable is missing), and the symbol for "Axis not in the position loop" (e.g. $\rightarrow \mid \leftarrow \mathbf{X}$) should not follow the position display.
- Turn the override potentiometer slowly to the right and turn it back left again before the servo lag display reaches the limit of the position monitoring.

When the override potentiometer is turned to the right, the control outputs an analogue voltage which is increased proportionally to the servo lag up to a maximum value of 10 V . The control operates correctly, if a voltage of $10 \mathrm{~V} \pm 0.1 \mathrm{~V}$ can be measured at the test adapter with the multimeter. If no voltage can be measured, switch off the main switch, unplug the connector X8 from the logic unit, disconnect the nominal value line from the servo amplifier and test this line for short-circuit. If the nominal value line is in order, connect X 8 to the logic unit again (leave the nominal value line disconnected), switch on the main switch and repeat the measurement with reference mark traverse. If an analogue voltage can be measured now, the control operates correctly. If no voltage can be measured, the analogue output of the logic unit is probably defective.

Measuring Setup to Check the Analogue Outputs

X8 Nominal value output for $1,2,3,4,5, S$
flange socket with female insert (15-pin

Pin No.	Signal
1	analogue output 1
3	analogue output 2
5	analogue output 3
7	analogue output 4
4	analogue output 5
8	analogue output S axis
9	OV analogue output 1

Pin No.	Signal
11	OV analogue output 2
13	OV analogue output 3
14	OV analogue output 4
6	OV analogue output 5
15	OV analogue output S axis
housing	external shield $=$ housing
$2,10,12$ do not assign	

18.2.2 Axes with Integral Digital Speed Controller

Depending on the machine parameter MP1900 the driving axes of TNC 425/E are individually defined as analogue axes (as TNC $415 \mathrm{~B} / \mathrm{F}$) or as digital axes.
With axes with integral digital speed controller (corresponding bit of MP1900 = 1) a TTL voltage is output at the analogue output.
If however, the axis does not move due to a defect, and if you want to test whether the error is inside or outside the control, the following steps are recommended:

- Switch off the main switch.
- Disconnect the nominal value line from the connector X8 and check for short-circuit and line disconnection.
- If the nominal value line is in order, leave it disconnected and connect the test adapter to the connector X 8 .
- Switch on main switch and machine control voltage.
- Switch the position display to LAG (servo lag); see section 18.3.
- Define the axis to be checked as analogue controlled axis (MP1900, corresponding bit =0)

Function		MP No.	Bit	Entry range	Original 11 Entry Values
Axes with				0 to 31	
digital speed controller		1900		$0=$ analogue-controlled axis	
	K		0	$+1=$ X-axis digital controlled	
	Y		1	$+2=$ Y-axis digital controlled	
	IV		2	$+4=$ Z-axis digital controlled	
	V		3	$+8=$ IV. axis digital controlled	
		4	$+16=$ V. axis digital controlled		

- The following machine parameters need to be checked and adapted. (Do not forget to re-enter the original values after having finished the test!)

MP	Entry Value	Function	Original Entry Values
$1410 . X$	$30[\mathrm{~mm}]$	Servo lag monitoring (cancellable), feed forward control	
$1420 . X$	$30[\mathrm{~mm}]$	Servo lag monitoring (EMERG. STOP), feed forward control	
$1140 . X$	$9.99[\mathrm{~V}]$	Movement monitoring	
$1710 . X$	$300[\mathrm{~mm}]$	Servo lag monitoring (cancellable), trailing operation	
$1720 . X$	$300[\mathrm{~mm}]$	Servo lag monitoring (EMERG. STOP), trailing operation	

- Turn the override potentiometer of the keyboard unit completely to the left and start reference mark traverse for the defective axis.
- Check the axis enable for the defective axis at the servo amplifier.
- Check the screen display
* (control ready for operation) must be switched on, the \mathbf{F} of the feed rate display must be lit normally (if the display is inverse the feed rate enable is missing) and the symbol for "axis not in position loop" (e.g. $\rightarrow \leftarrow \mathbf{X}$) must not follow the position display.
- Turn the override potentiometer slowly to the right and turn it back left before the servo lag display reaches the limit of the position monitoring.

When the override potentiometer is turned to the right, the control outputs an analogue voltage which is increased proportionally to the servo lag up to a maximum value of 10 V . The control operates correctly, if a voltage of $10 \mathrm{~V} \pm 0.1 \mathrm{~V}$ can be measured at the test adapter with the multimeter. If no voltage can be measured, the analogue output of the logic unit is probably defective.

Measuring Setup to Check the Analogue Outputs

X8 Nominal value output for $1,2,3,4,5, S$

flange socket with female insert (15-pin)

Pin No.	Signal
1	analogue output 1
3	analogue output 2
5	analogue output 3
7	analogue output 4
4	analogue output 5
8	analogue output S axis
9	OV analogue output 1

Pin No.	Signal
11	OV analogue output 2
13	OV analogue output 3
14	OV analogue output 4
6	OV analogue output 5
15	OV analogue output S axis
housing	external shield = housing
$2,10,12$ do not assign	

Observe the safety instructions!

18.3 Switching Over the Position Display

| Press Key | Function |
| :--- | :--- | :--- |
| \square | TNC in operating mode MACHINE (manual, full sequence etc.) |
| | Activate MOD function |

MANUAL OPERATION					PLC PROGRAMMING
POSITION DISPLAY			ACTL.		
			REF		
CHANGE MM/INCH PROGRAM INPUT AXIS SELECTION			M M		
			HEIDENHA	I N	
			$\% 00000$		
	SOFTWARE	NUMBER	280540		
	SOFTWARE	NUMBER	252499		
			1		

| POSITION/ | AXIS | AXIS | AXIS | HELP | | END |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INPUT PGM | LIMIT (1) | LIMIT (2) | LIMIT (3) | EELS | | |

	Select dialogue POSITION DISPLAY Switch to desired display mode NOML: nominal position DIST: distance-to-go ACTL: actual position REF: distance to reference mark (machine datum); with distance-coded measuring system zero REF mark current servo lag
END	ExG: Exit the subprogram

18.4 Adjustment of the Feed Rate
 18.4.1 Axes with Analogue Speed Controller

Check and adapt the machine parameters (note down the original entry values).

MP	Entry Value	Function	Original Entry Value
1390	0	feed forward control 1) ON in automatic operating modes	
$7290 . X$	6	display step $=0.1 \mu \mathrm{~m}$	

- Switch position display to LAG (servo lag).
- Enter the following test program (e.g. for X axis)

0 BEGINPGM X MM
1 LBL 1
$2 \mathrm{X}+0 \mathrm{~F}$ MAX
$3 \mathrm{X}+100 \mathrm{~F} \mathrm{MAX}$ (select a larger traverse range if possible!)
4 CALL LBL 1 REP 100/100
5 END PGM X MM

- Run the test program in the operating mode "PROGRAM RUN / FULL SEOUENCE".
- Adjust the feed rate at the servo amplifier (tachometer) until the servo lag display is approximately zero for positioning in both directions.
- Repeat the adjustment for all axes.
- Reset the machine parameters and the position display to the original values.
${ }^{1)}$ The operating mode "feed forward control" must be optimized.

18.4.2 Axes with Integral Digital Speed Controller

Depending on the machine parameter MP1900 the driving axes of TNC 425/E are individually defined as analogue axes (as TNC $415 \mathrm{~B} / \mathrm{F}$) or as digital axes.

With axes with integral digital speed controller (corresponding bit of MP1900 $=1$) the feed adjustment of the servo amplifier as described in section 18.4.1 is not required.

18.5 Offset Adjustment

18.5.1 Axes with Analogue Speed Controller

a) Offset Adjustment with Code Number

Press Key	Function
	TNC in operating mode PROGRAMMING AND EDITING Prepare TNC for entry of code number Enter code number for offset adjustment and confirm with ENT

Now the contents of the offset memory is displayed on the screen in converter steps (1 conv. step $=0.153 \mathrm{mV}$). From left to right: X, Y, Z, IV, V.

CONTINUE	
OUIT	Offset compensation is executed

[^13]
SERVICE MANUAL TNC 415B/425

Page 127
Issue: 20.08.95

b) Cyclic Offset Adjustment via Machine Parameters

In the machine parameter MP1220 the cycle time is defined [1s] after which an offset is compensated by one converter step.
To switch off the automatic offset adjustment, enter the value 0 in the machine parameter MP1220.

NOTE:

If an offset voltage of 100 mV is reached with automatic offset adjustment, the control switches off, generating the error message

GROSS POSITIONING ERROR <axis><CPU number> E

c) Offset Adjustment at the Servo Amplifier

- Check and adjust the following machine parameters. (Note down the original values before changing.)

MP	Entry Value	Function	Original Entry Value
1080.0	0		
1080.1	0	integral factor	
1080.2	0		
1080.3	0	cycle time for	
1080.4	0	automatic offset adjustment	
1220	0	feed forward control ON	
1390	≥ 1		
1510.0	≥ 1	KV factor for feed forward control	
1510.1	≥ 1		
1510.2	≥ 1	6	display step $=0.1$ mm
1510.4			
$7290 . X$			

- Switch position display to LAG (display of servo lag); see section 18.3.
- Cancel the offset compensation with code number (see item a)
- Adjust the offset at the servo amplifier until the values of the individual axes are zero or oscillate symmetrically about zero.
- Reset the machine parameter values and the position display to their original values.

18.5.2 Axes with Integral Digital Speed Controller

With axes with integral digital speed controller (TNC 425, corresponding bit of MP1900 = 1)
the offset adjustment as described in section 18.5.1 is not required.

Page 128
Issue: 20.08.95

18.6 Oscilloscope Function

TNC 415B/425 features an integral oscilloscope. To activate the OSCILLOSCOPE mode, enter the code number 688379.

MANUAL OPERATION	OSCILLOSCOPE					
OUTPUT			RAMP			
NOML. FEED RATE			0			
SAMPLE TIME			0,6 MS			
CHANNEL 1 X			VOLT. ANLOG			
CHANNEL 2 Y			OFF			
CHANNEL 3 Z			VOLT. ANLOG			
CHANNEL 4 X			OFF			
TRIGGER			FREE RUN+8			
SLOPE PRE-TRIGGER			+			
			0 \%			
OSC I					MP EDIT	END

The axes, parameters and trigger conditions to be recorded are selected by pressing the cursor keys which move the cursor to the desired position.

The following characteristic curves can be displayed:

Feed rate	F ACTL	actual value $(\mathrm{mm} / \mathrm{min})$
	F NOML	nominal value $(\mathrm{mm} / \mathrm{min})$
Shaft speed 1)	N ACTL	actual value $(\mathrm{mm} / \mathrm{min})$
	N NOML	nominal value $(\mathrm{mm} / \mathrm{min})$
Speed controller 1)	N INT	difference of nominal and actual for speed controller (mm/min)
Position	S ACTL	actual value (mm)
	S NOML	nominal value (mm)
Servo lag	S DIFF	servo lag for position control (mm)
Analogue voltage	U ANALOG	analogue voltage output (V)

18.6.1 Soft Key Rows

OSZI						$\substack{\text { MP } \\ \text { EDIT }}$	END

CH	1	CH	2	CH	3	CH	4		SET UP
StaRt	END								

INVERT	\downarrow	\uparrow	$\ddagger \square$	$\ddagger \downarrow \square$	$\square \square$	CURSOR $1 / 2$	END

Explanation of the soft keys:

> CURSOR
> $1 / 2$
activate cursor

SERVICE MANUAL TNC 415B/425

18.6.2 Trigger

The following possibilities are available:

- FREE RUN Recording is terminated by hand.
- SINGLE SHOT Recording of a memory contents; started by trigger condition
- CHANNEL

Recording starts when the trigger threshold of the selected channel is exceeded.

Trigger Threshold

The trigger threshold for the selected channel is indicated as a numerical value; the units are as follows:

- feed rate ($\mathrm{mm} / \mathrm{min}$)
- position (mm)
- shaft speed (mm/min)
- servo lag ($\mu \mathrm{m}$)
- analogue voltage (mV)

Edges

Triggering with rising (positive) and falling (negative) edge.

Pre-Trigger

Definition of recording start in \% of the total recording time; possible entry values are 0\%, 25\%,50\%, 75\%, 100\%; selectable by pressing ENT.

18.6.3 Recording

The recording parameters to be edited are selected via arrow keys. The values for the feed rate threshold and the trigger threshold are entered via the numerical keys. The entry values for all other recording parameters are selected by pressing ENT.

Output

To output a nominal value in the MANUAL mode, it is possible to chose between a pre-set ramp and a jump function. The jump function (only possible with digital controlled axes) is required for the adjustment of the speed encoder. Moreover, if the preliminary entry value is unknown, the maximum acceleration can be determined from jump function and recording with the oscilloscope. In MDI and AUTOMATIC the axes are always accelerated following the selected ramp.

Feed Rate

If a jump function is selected as output signal, the feed rate is entered in $\mathrm{mm} / \mathrm{min}$. The programmed feed rate is valid for the acceleration subsequent to the ramp.

Time Resolution

The recording time is between 2.4576 seconds and 24.576 seconds (selected time $\times 4096$). The selected time $(0.6 \mathrm{~ms}$ to 6 ms$)$ is the clock time for recording the characteristic lines. The recording time is displayed below the grating. Beginning and end of display (relative to the trigger point; cursor line T1) are displayed as well.

SERVICE MANUAL TNC 415B/425

Page 132
Issue: 20.08.95

Channel 1 to Channel 4

Four channels can be selected for recording. The assignment of the axes to the channels is variable; select the axis to be changed, press ENT to switch the channel.

For each channel a characteristic line is selected. It consists of the following values:

Feed rate	V ACTL	actual value $(\mathrm{mm} / \mathrm{min})$
	V NOML	nominal value $(\mathrm{mm} / \mathrm{min})$ Shaft speed
	N ACTL	actual value $(\mathrm{mm} / \mathrm{min})$
Speed controller	N NOML	nominal value $(\mathrm{mm} / \mathrm{min})$
Position	N INT	difference of nominal/actual value for the speed controller (mm/min)
	S ACTL	actual value (mm)
Servo lag	S NOML	nominal value (mm)
Analogue voltage	S DIFF	servo lag for position controller (mm)
Channel	U ANALOG	analogue voltage output (V)
	OFF	channel is displayed
	SAVED	channel is stored

Recording is started by pressing the START soft key. A soft key row is displayed which only contains a STOP key. The process can be interrupted at any time.
During recording the stored channels cannot be displayed simultaneously, since it is not possible to synchronise the stored channels and the newly recorded channels.

Evaluation of the recorded channels via cursor

Whereas the entire memory contents is displayed after start, the time window selected before the start is displayed after re-setup of the screen.
On the left side of the screen the time T1 (time of trigger event) is displayed. Below there is the absolute value in $[\mathrm{mm} / \mathrm{min}]$, $[\mathrm{mm}]$ or $[\mathrm{mV}]$.
If an additional cursor with the time T2 is displayed by means of the key CURSOR $1 / 2$, it can be shifted with the arrow keys on the TNC operating panel. The time T2 is the difference to T1; the numerical value displayed below is the difference to the value belonging to T 1 .
The T2 display and the additional cursor can be erased by pressing the soft key END or "Cursor 1/2".

Vertical Zoom

For the display of each selected channel the vertical grid can be changed in steps via soft key. The vertical grid size is displayed on the left side of the screen below the designations of the channel and the recording.

Centering the Display

The vertical resolution is selected such that an optimum display is ensured.
Returning to the original vertical resolution:
By pressing NOENT the original display of the stored data is re-established.

Horizontal Zoom

The recording comprises 4096 evaluated data. The time resolution (i.e. the clock time of the recorded data) can be set between 0.6 and 6 ms . The range for extension and compression is limited as follows:

	evaluated data	data: pixels
minimum display	4096	$8: 1$
max. extended display	64	$1: 8$

The length of the displayed detail and its starting point as absolute position within the duration of the recorded data is depicted as scroll bar in the status window.

19. PLC Inputs and Output

19.1 PLC Inputs

19.1.1 PLC Inputs on LE

Connector X42: I0 to I31 and acknowledgemert "control ready for operation"
Connector X46: I128 to I152

$" 0$ " signal	$\mathrm{U}_{\mathrm{e}}=-20 \mathrm{~V}$ to 3.2 V
	$\mathrm{l}_{\mathrm{e}}=1.0 \mathrm{~mA}$ with $\mathrm{U}_{\mathrm{e}}=3.2 \mathrm{~V}$
	$" 1 "$ signal
	$\mathrm{U}_{\mathrm{e}}=13 \mathrm{~V}$ to 30.2 V
	$\mathrm{l}_{\mathrm{e}}=3.8 \mathrm{~mA}$ to 8.9 mA

19.1.2 PLC Inputs on PL 400

Terminal strips X4 to X9: I64 (I192) to I126 (I254)

"0" signal	$\mathrm{U}_{\mathrm{e}}=-20 \mathrm{~V}$ to 4 V
	$\mathrm{l}_{\mathrm{e}}=1.6 \mathrm{~mA}$ with $U_{\mathrm{e}}=4 \mathrm{~V}$
$" 1 "$ signal	$\mathrm{U}_{\mathrm{e}}=16.5 \mathrm{~V}$ to 30 V
	$\mathrm{l}_{\mathrm{e}}=6.2 \mathrm{~mA}$ to 12.6 mA

19.1.3 PLC Inputs on PL 405/410

PL 405, terminal strips X3 to X4: 164 (I192) to 195 (I223)
PL 410, terminal strips X3 to X6: I64 (I192) to I127 (I255)
$\begin{array}{ll}\text { "0" signal } & U_{e}=-20 \mathrm{~V} \text { to } 4 \mathrm{~V} \\ & \mathrm{l}_{\mathrm{e}}=1.6 \mathrm{~mA} \text { with } U_{\mathrm{e}}=4 \mathrm{~V}\end{array}$
"1" signal $\quad U_{e}=16.5 \mathrm{~V}$ to 30 V
$\mathrm{l}_{\mathrm{e}}=6.2 \mathrm{~mA}$ to 12.6 mA

19.2 PLC Outputs

19.2.1 PLC Outputs on LE

Connector X 41 : O0 to O 30 and output "control ready for operation"
Connector X46: O0 to O7 1)

1) outputs available at $X 46$ or $X 41$
"1" signal $\quad \begin{array}{ll}U_{a} \text { min } & =U_{B}-3 V \\ & I_{a} N O M L\end{array}=0.1 \mathrm{~A}$.

19.2.2 PLC Outputs on PL 400

Terminal strips X1 to X3: O32 (O64) to O62 (O94) and output "control ready for operation"

"1" signal \quad| U_{a} min | $=U_{B}-3 \mathrm{~V}$ |
| :--- | :--- |
| | $l_{a} N O M L$ |$=1.2 \mathrm{~A}$.

19.2.3 PLC Outputs on PL 405/410

PL 405, terminal strip X8:
O48 (O80) to O62 (O94) and output "control ready for operation"
PL 410, terminal strips X7 to X8: O32 (O64) to O47 (O79) and output "control ready for operation"

$$
\begin{array}{ll}
\text { "1" signal } & U_{\mathrm{a} \text { min }}=U_{\mathrm{B}}-3 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{a}} \mathrm{NOML}=1.2 \mathrm{~A}
\end{array}
$$

Pin layout: see section 6

19.3 Checking the PLC Inputs and Outputs

The test unit (see section 20) can be used to check the PLC inputs and outputs on the logic unit (X41, X42, X46). The voltage level of the PLC inputs and the output current of the PLC outputs on the PL 400/405/410 can be measured directly at the terminals.

19.3.1 PLC Inputs

The PLC inputs can be checked as follows:

- Connect the test unit between LE and PLC (measure directly at the PL boards).

| Press Key | Function |
| :--- | :--- | :--- |

Observe the safety instructions!

19.3.2 PLC Outputs

The PLC outputs can be checked as follows:

- Connect the test unit between the PLC and the LE (measure directly at the PL boards).

Observe the safety instructions!

19.3.3 Measurement Setup for PLC Inputs and Outputs at the LE

X41: PLC output
X42: PLC input
X46 : machine operating panel

Observe the safety instructions!

19.4 Diagnosis Possibilities in the PLC Mode

19.4.1 TRACE Function

SELECT							
$M / I / 0 / T / C$	LOGIC	DIAGRAM	FIND	HEX \hat{N} DECIMAL	START STOP DISPLAY	START TRACE	STOP TRACE

The TRACE function provides the possibility of controlling the logic states of the markers, inputs, outputs, timers and counters; it also serves to check the contents of bytes, words and double words of the compiled PLC program.

An instruction list (AWL) of the compiled program is displayed. In addition, the contents of the operand and of the accumulator is displayed in HEX code or decimal code. All active commands of the instruction list are marked by "*". Use the cursor keys or the GOTO function to display the requested program part.

19.4.2 LOGIC Diagram

The logic states of up to 16 operands (M, I, O, T, C) can be depicted simultaneously on the screen.
1024 PLC scans can be traced.
Activation of the Logic Diagram:

Press Key	Function
	Press soft key
LOGICE DIAGRAM	Press soft key

Selecting the Operands and Starting the Logic Diagram

19.4.3 TABLE Function

Press Key				Function			
	TABLE			Call TABLE function			
SET	Reset	Marker	I NPUT	Output	Counter	T imer	END
D				Key on VDU			
Byte	Word	Double	$\begin{gathered} \frac{\text { HEX }}{\hat{\vdots}} \\ \text { DECIMAL } \end{gathered}$				END

After pressing a soft key, the corresponding table is activated.
The logic states of the markers, inputs, outputs, counters and timers are dynamically displayed. In the tables for bytes, words and double words, the display can be switched between HEX and DECIMAL.
With the cursor keys or the GOTO key, positions of a table can be selected.

Page 141
Issue: 20.08.95

Notes

19.5 Compiling the PLC Program

Selecting a File as EDITOR PGM:

19.6 Output "Control Ready for Operation" and Acknowledgement for Test "Control Ready for Operation "

Important functions are monitored by the TNC 415B/425 by way of a self-diagnosis system (electronic assemblies such as micro-processor, EPROM, RAM, positioning systems, encoders etc.).

If an error is detected, a blinking error message in plain language is displayed in the dialogue line. As soon as this error message is generated, the control opens the output "Control Ready for Operation".

The output "Control Ready for Operation" is available via:
Logic unit, connector X41 pin 34
PL 400, terminal strip X3 pin 10
PL 405, terminal strip X8 pin 16
PL 410, terminal strip X8 pin 16
By switching off the power switch or by pressing \square this state can be cancelled, provided that the error cause has been eliminated.

The output "Control Ready for Operation" is to switch off the +24 V control voltage in the machine tool interface. Since this is an important safety function, the switch-off function of the output "Control Ready for Operation" is tested via the input "Acknowledgement Control Ready for Operation" each time the control is switched on.

TNC 415B/425 features three monitoring systems (main processor, geometry processor and CLP processor) which are also tested when the machine tool is switched on.

If the +24 V at the input "Acknowledgement Control Ready for Operation" are missing during the test routine after power-on, the error message " RELAY EXT. DC VOLTAGE MISSING" is displayed. If however, the acknowledgement is switched off too late (or not at all) after the output has been switched off, the blinking error message "EMERGENCY STOP DEFECTIVE" is generated. This error message is also displayed, if the power supply of the PLC is missing (power supply of the PLC: see section 10).

If the control detects an error during the power-on test routine, a bridge can be inserted between the output "Control Ready for Operation" and the input "Acknowledgement Control Ready for Operation" (disconnect the wires) in order to determine whether the defect is due to the control or to the interface. If the error is still present after inserting the bridge and with correct PLC power supply, the defect is located in the logic unit. If however, the error does not occur with the bridge being inserted, the defect is located in the interface.

Warning!

Do not forget to remove the bridge and to install the standard operating state after the test.

Observe the safety instructions!

19.6.1 Wiring of the EMERGENCY STOP Interface

19.6.2 TNC 415B/425 Flow Diagram

Time	Remarks	Error Message
1		POWER INTERRUPTED
2	Waiting for control voltage	RELAY EXT. DC VOLTAGE MISSING
3	After switching off the output "Control Ready for Operation", the "Acknowledgement Control Ready for Operation" must be switched off within 114 ms; otherwise the blinking error message is generated.	YXX$11 \quad=$ Communication processor 11 $1 . \quad=$ Geometry processor
4	If the acknowledgement is switched off during operation, the error message is	EMERGENCY STOP

20. Test Units

20.1 Test Unit for the PLC Inputs and Outputs

PL Test Unit, Id.No. 24735901
to test the PLC inputs and outputs on PL 400

20.2 Universal Measuring Adapter

Used:

as universal test unit for D-Sub connectors, 9-pin to 37-pin (Id.No. 255480 01)

The measuring adapter can be used to test the inputs and outputs of D-Sub connectors (9-pin to 37-pin). On the following page the adapter cables are shown that are required for the different connectors.

Adaptor Cable,9pin Id.No. 25548101

Adaptor Cable, 15pin Id.No. 25548201

Adaptor Cable, 25pin Id.No. 25548301

Adaptor Cable, 37pin Id.No. 25548401

20.3 Encoder Diagnostic Set, Id.No. 25459901

Used:

to test the electrical functions of an encoder
(Further information please see from the operating instructions of the Diagnostic Set.)

21. Exchange Instructions

21.1 Important Notes

Observe the safety instructions!

21.1.1 Required Equipment

1 external data medium, e.g. FE 401/B or PC with connecting cable
1 tool set (screw driver, socket wrench etc.)
1 MOS protection device (only required for exchanging boards or EPROMs)

21.1.2 MOS Protection

If the processor board, the PLC graphics board, the CLP boards or EPROMs are to be exchanged, a MOS protection is definitely required, since otherwise MOS components on the boards or the EPROMs may be destroyed.

Caution!

503
Avoid any unprotected handling of the boards or EPROMs with statically charged objects (packaging material, storage etc.).

MOS Protection

21.1.3 Software Compatibility

Exchange units (LOGIC UNIT) are always supplied with the most recent software version. Exchange boards, however, are delivered without software and without software enable module. Therefore, the EPROMs and the software enable module of the defective board must be inserted into the exchange board at site. Always remove the EPROMs and the software enable module before sending us boards for repair!)

21.1.4 Backing up RAM Data

Before the LOGIC UNIT, an assembly (e.g. processor board, power supply etc.) or the NC software are exchanged, all RAM data (files, settings etc.) must be backed up.

The following files may be stored in RAM and must be backed up on a external data medium:

NC memory management	Extension in TNC	Extension on external medium
NC program, HEIDENHAIN dialogue	. H	. H
NC program, ISO	. 1	.
Active tool table	TOOL.T	TOOL.T
Tool data (table)	. T	. T
Pocket table		TOOL_P.R
Pallet table	.P	.L
Datum table	. D	.N
Text file (ASCII)	. A	. A
Point table (digitizing)	.PNT	U
PLC memory management (RAM)		
PLC program	PLC	.P
Error messages 1. language	ER1	. A
Error messages English	.ERE	. A
Dialogues 1. language	.DI1	. A
Dialogues English	.DIE	. A
ASCII files	. A	. A
Help texts	.HLP	.J
Data for axis error compensation	.COM	.V
Data for axis error compensation	. CMA	S
Machine parameter mode		
Machine parameter list	. MP	M
Compensation value table (accessible via code number)	.KOR	. S

Letters representing additional information on the files and programs are displayed in the status display:
E: The file or the program was selected in PROGRAMMING.
S: The file or the program was selected and activated in TEST RUN.
M: The file or the program was selected and activated in PROGRAM RUN/FULL SEQUENCE or in PROGRAM RUN/SINGLE BLOCK.
P : The file or the program is protected against deleting and editing.
IN : The file or the program was programmed in inches.
W : The file or the program was not completely transferred to the external medium and thus is no longer available.

The data can be read out as described in section 17.3.
The BACKUP routine is a very useful function to read out all data.
After pressing MOD in the operating mode "Machine Parameter Editing" (code number 95148) the menu for interface configuration is displayed, comprising the soft keys

| BACKUP
 DATA |
| :---: | | RESTORE |
| :---: |
| DATA |.

interface and filed in \$BACKUP.A. To reload the data into the TNC, press the soft key | RESTORE |
| :---: |
| DATA |

Moreover, the pre-set values and the entry values for the supplementary operating modes must be determined so that they can be re-entered after the exchange.

Switch off and on the main switch of the machine tool.

21.1.5 Labelling the Connecting Cables

If the connecting cables are labelled incompletely or not at all, they have to be marked such that the correct plug connections can be re-established after having exchanged the logic unit or another assembly.
Pin layout: see section 6

WARNING:

Switching the connecting cables may destroy the unit!

21.2 Exchanging the Logic Unit

21.2.1 Observe the exchange instructions (section 21.1)!

21.2.2 Dismounting the Logic Unit

a) Switch off the main switch.
b) Loosen all plug connections and clamped joints at the logic unit.

Round connector
Loosen knurled coupling rings (TNC 415B/F only)

D-Sub connector
Loosen knurled screws

NOTE:

If a PL400/410 is mounted on the upper side of the housing, it must be removed before dismounting the logic unit.
c) Loosen the 4 mounting screws on the logic unit

d) Remove the old logic unit and insert the new logic unit.

21.2.3 Mounting the Logic Unit

The logic unit is mounted in the reverse order that is was dismounted.
a) Insert and secure the logic unit.
b) Engage the connectors.

Observe that no connectors are switched!
c) Switch on the main switch.
d) Read in the machine tool data (machine parameters, PLC program, NC programs and tables) that have been backed up before the exchange.
e) Enter the pre-set values and the supplementary operating modes from the table in section 21.1.4
(before traversing the reference marks).
f) Offset adjustment with code number (see section 18.5).

Exchange is now finished.

21.3 Exchanging the Processor Board

21.3.1 Observe the exchange instructions (section 21.1)!

21.3.2 Dismounting the Processor Board

a) Switch off the main switch on the machine tool.
b) Disengage the connectors on the processor board (X21, X22, X23).
c) Undo the lock and open the logic unit.

Undo lock

d) Disengage internal connectors

e) Loosen/remove fixing screws

f) Lift out the processor board; exchange the EPROMs, if required (see section 21.8). Insert the new board.

21.3.3 Mounting the Processor Board

The processor board is mounted in the reverse order that is was dismounted.
a) Insert and secure the processor board.
b) Engage the connectors.

(a0) Observe that no connectors are switched!

c) Close the logic unit and the lock.
d) Switch on the main switch.
e) Read in the machine data (machine parameters, PLC program, NC programs and tables) that have been backed up before the exchange.
f) Enter the pre-set values and the supplementary operating modes from the table in section 21.1.4 (before traversing the reference marks).
g) Offset adjustment with code number (see section 18.5).

Exchange is now finished.

Warning!

Send and store the boards only in the original packaging that protects them from acquiring static charge. Never use conventional plastics to wrap the boards in.

21.4 Exchanging the CLP Board

21.4.1 Observe the exchange instructions (section 21.1)!

21.4.2 Dismounting the CLP Board

a) Switch off the main switch at the machine tool.
b) Disengage the connectors at the CLP board.
c) Undo the locks and open the logic unit.

d) Disengage internal connectors

CLP board TNC 415B

e) Loosen/remove the fixing screws.

CLP board TNC 415B

CLP board TNC 425

f) Lift out the CLP board; exchange the EPROM, if required (see section 21.8). Insert the new board.

21.4.3 Mounting the CLP Board

The CLP board is mounted in the reverse order that is was dismounted.
a) Insert and secure the CLP board.
b) Engage the connectors.

Observe that no connectors are switched!
c) Close the logic unit and the locks.
d) Switch on the main switch.
e) Offset adjustment with code number (see section 18.5).

Exchange is now finished.

Warning!

4
Send and store the boards only in the original packaging that protects them from acquiring static charge. Never use conventional plastics to wrap the boards in.

21.5 Exchanging the PLC Graphics Board

21.5.1 Observe the exchange instructions in section 21.1!

21.5.2 Dismounting the PLC Graphics Board

a) Switch off the main switch of the machine tool.
b) Disengage the connectors on the PLC graphics board.
c) Undo the lock and open the logic unit.

Undo lock

PLC graphics board
d) Disengage internal connectors.

e) Loosen/remove fixing screws

f) Lift out the PLC graphics board and insert the new board.

21.5.3 Mounting the PLC Graphics Board

The PLC graphics board is mounted in the reverse order that it was dismounted.
a) Insert and secure the PLC graphics board.
b) Engage the connectors.

Observe that no connectors are switched!
c) Close the logic unit and the lock.
d) Switch on the main switch.
e) Carry out offset adjustment with code number (see section 18.5).

Exchange is now finished.

Warning!

Send and store the boards only in the original packaging material that protects them from acquiring static charge. Never use conventional plastics to wrap the boards in.

21.6 Exchanging the POWER SUPPLY Unit

a) Observe the exchange instructions in section 21.1!
b) Switch off the main switch on the machine tool.
c) Undo the lock and open the logic unit.

Undo lock

d) Disengage the connection to the power supply unit at the processor board.

e) Pull the cable harness to the power supply through the housing.
f) Disengage the connector of the NC power supply and loosen the mounting screws.

Disengage
2-pin connector

Slide out the power supply unit to the right and insert the new power supply unit.
g) - Fasten the mounting screws.

- Pull the cable harness through the housing again.
- Engage the connectors.
- Close the logic unit, switch on the main switch.

Exchange is now finished.

Observe that no connectors are switched!

Warning!

Send and store the boards only in the original packaging material that protects them from acquiring static charge. Never use conventional plastics to wrap the boards in.

21.7 Exchanging the PLC I/O Boards

21.7.1 Exchanging the PLC I/O Board PL 400

a) Observe the exchange instructions in section 21.1 !
b) Switch off the main switch.
c) Disengage the connectors at the PL 400

d) Unscrew the cover of the PL 400 and disconnect the cable to the PLC graphics board from the PL 400.

e) Unscrew the PL 400 from the logic unit. 1)

f) The new PLC I/O board PL 400 is mounted in reverse order:

- Mount the PL 400 to the logic unit. 1)
- Engage the connectors.
- Switch on the main switch.

Exchange is now finished.

Warning!

Send and store the boards only in the original packaging material that protects them from acquiring static charge. Never use conventional plastics to wrap the boards in.

1) The PL 400 may also be located in the switch cabinet.

21.7.2 Exchanging the PLC I/O Board PL 410

a) Observe the exchange instructions in section 21.1 !
b) Switch off the main switch.
c) Loosen the connectors at the PL 410.

Loosen clamp connection
d) Loosen the PL 410 mounting screws
e) The new PLC I/O board PL 410 is mounted in reverse order:

- Engage all connectors.
- Check the correct position of the switch ENABLE ANALOGUE INPUTS.
(ON position: analogue part activated, other position: analogue part not activated)
- Switch on the main switch.

Exchange is now finished.

Warning!

Send and store the boards only in the original packaging material that protects them from acquiring static charge. Never use conventional plastics to wrap the boards in.

21.7.3 Exchanging the Analogue Board PA 110

a) Observe the exchange instructions in section 21.1 !
b) Switch off the main switch.
c) Disengage the connectors at the PA 110.

D-Sub connector
Loosen knurled screw
d) Dismounting the PA 110

The PA 110 may be fixed in two ways:

1) via fixing bar

Dismounting: Use a screwdriver to pry the lock upwards and remove the PA 110 from the bar.
2) via four mounting screws:

Dismounting: • Loosen the mounting screws in the housing ($* \rightarrow$)

- Unscrew the base plate and reassemble the PA for shipping.
e) The new PA 110 is mounted in reverse order:
- Engage the connectors.
- Switch on the main switch.

Exchange is now finished.

Warning!

403
Send and store the boards only in the original packaging material that protects them from acquiring static charge. Never use conventional plastics to wrap the boards in.

21.8 Exchanging the EPROMs

21.8.1 MOS Protection

To exchange the EPROMs MOS protection is indispensable, as otherwise the EPROMs could be destroyed by static charge.

Observe the mark on the EPROMs (do not turn them by 180°); be sure not to damage any components during the exchanged. Use an appropriate tool. After the software exchange the logic unit must be marked with the new NC-software number (see sections 5.1 and 5.2).
e.g. IC drawing punch and insertion tool

21.8.2 EPROM Designation

PROCESSOR Board
Id.No. 26855301

Note:

With the current software version IC-P3 / IC-P4 are not inserted.

RUN-IN: Internal test program (does not have to be exchanged together with the software)

22. Machine Parameter List

Code Numbers

123	MACHINE PARAMETER EDITING FOR END USERS (marked by *)
75368	OFFSET ADJUSTMENT
79513	VOLTAGE AND TEMPERATURE DISPLAY
86357	REMOVE EDIT/ERASE PROTECTION
95148	MP MODE
105296	COMPENSATION VALUE LIST
531210	RESET M 1000 TO M 2000 AND BYTES 0-127
620159	DOWNLOAD RUN-IN PROGRAM VIA INTERFACE
807667	PLC MODE
688379	INTERNAL OSCILLOSCOPE
951026	START RUN-IN PROGRAM FROM EPROM

Machine Parameters

In the following list the machine parameters for all software versions are listed.
Since however, certain machine parameters are only valid for a certain software version, or are only active from a certain software version on, columns with symbols for differentiation have been introduced after the machine parameter number

Explanation of the Symbols:

- = The machine parameter applies for all software versions of this control.

04 = The machine parameter has been introduced with a certain software version (e.g. 04 means: introduced with software version 04).
104 = The machine parameter is inactive.
$=$ The machine parameter is not available with this control.

Explanation of the Columns:

A $\quad=$ TNC 415B/F/BR/FR and TNC 425/E with NC software 259 93* -- or 259 94*
B $\quad=$ TNC 415 B/F/BR/FR and TNC $425 / E$ with NC software $28054^{*}-$ or 28056^{*}-- (special software)
C = reserved
AE6 = entry values for operation with HEIDENHAIN test unit

User Parameters

By means of the MOD function "User Parameters" certain machine parameters can be altered easily (e.g. adaptation of the data interface). The user parameters that are accessible via this MOD function are determined in machine parameters by the machine tool manufacturer

Input Values

Input values are e.g.

- the numbers 0 and 1 to select functions, algebraic signs or the counting direction or
- numerical values for feed rates, displacement etc.
- decimal input values that can be calculated by combining several functions (bitcoded)
- bit patterns (selectable with \%)
e.g. MP 10 : \% 00111
ie. XYZ with encoder
IV, V without encoder
- hexadecimal values (selectable with \$)
e.g. MP 7353.0: \$ 0F818A0

Structure

The machine parameters are subdivided into groups.
The parameter numbers are structured such that the list can be expanded easily.

0-999 Encoders and machine tool axes: allocation, evaluation, compensation

Positioning
Operation with feed precontrol
Operation with servo lag
Integral digital speed control (TNC 425)
Integral speed and current control (TNC 426 PA)
Spindle
Integral PLC
Adaptation of the data interface
3D-touch probe (general parameters)
Connection of measuring touch probe or touch trigger probe
Digitizing with 3D-touch probe
Tool calibration with TT 110
Tapping
Display and programming
User parameters
Colours, general display and FK graphics
Operation and program run
Tilting the working plane
Hardware

Function		$\mathbf{M P}$ No.	Bit	A	B	C	Input		AE-6 Entry value
Axes with encoder	$\begin{aligned} & X \\ & Y \\ & Y \\ & Z \\ & I V \\ & V \end{aligned}$	10	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	-	*	*	$\begin{array}{r} 0= \\ +1= \\ +2= \\ +4= \\ +8= \\ +16= \end{array}$	no encoder X axis with encoder Y axis with encoder Z axis with encoder IV. axis with encoder V. axis with encoder	\% 11111
Encoder monitoring Absolute position of distance-coded reference marks	$\begin{aligned} & X \\ & Y \\ & Z \\ & Z \\ & I V \\ & V \\ & S \end{aligned}$	30	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & \hline \end{aligned}$	-	-	-	$\begin{array}{r} 0= \\ +1= \\ +2= \\ +4= \\ +8= \\ +16= \\ +32= \end{array}$	no axis monitored X axis monitored Y axis monitored Z axis monitored IV. axis monitored V. axis monitored S axis monitored	\% 111111
Signal amplitude	$\begin{gathered} X \\ Y \\ Y \\ Z \\ \text { IV } \\ V \\ S \end{gathered}$	31	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & \hline \end{aligned}$	-	-	-	$\begin{array}{r} 0= \\ +1= \\ +2= \\ +4= \\ +8= \\ +16= \\ +32= \end{array}$	no axis monitored X axis monitored Y axis monitored Z axis monitored IV. axis monitored V. axis monitored S axis monitored	\% 111111
Edge separation	$\begin{aligned} & X \\ & Y \\ & Y \\ & Z \\ & \text { IV } \\ & \text { V } \\ & \text { S } \end{aligned}$	32	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	-	-	-	$\begin{array}{r} 0= \\ +1= \\ +2= \\ +4= \\ +8= \\ +16= \\ +32= \\ \hline \end{array}$	no axis monitored X axis monitored Y axis monitored Z axis monitored IV. axis monitored V. axis monitored S axis monitored	\% 111111

Function	$\begin{array}{ll} \text { MP } \\ \text { No. } & \text { Bit } \end{array}$	A	B	C	Input	AE-6 Entry value
VDU display	40 0 1 2 3 4 5	$\stackrel{\rightharpoonup}{\bullet}$		$\stackrel{*}{*}$	$\quad 0$ $=$ $+1=$ no axis displayed $+2=$ Y axis displayed $+4=$ Z axis displayed $+8=$ IV. axis displayed $+16=$ V. axis displayed $+32=$ position of regulated spindle (not with M03/M04)	\% 111111
Controlled axes	50 0 1 2 3 4	-	*	-	0 $=$ $+1=$ no axis controlled $+2=$ Y axis controlled controlled $+4=$ Z axis controlled $+8=$ IV. axis controlled $+16=$ V. axis controlled	\% 11111
PLC auxiliary axes	60	-	*	-	$0=$ no auxiliary axis $+1=$ X axis is auxiliary axis $+2=$ Y axis is auxiliary axis $+4=$ Z axis is auxiliary axis $+8=$ IV. axis is auxiliary axis $+16=$ V. axis is auxiliary axis	\% 00000
Assignment of the encoder inputs to the machine axes	$\begin{aligned} & 110.0 \\ & 110.1 \\ & 110.2 \\ & 110.3 \\ & 110.4 \end{aligned}$	$\stackrel{+}{*}$	-	$\stackrel{*}{*}$		$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$

[^14]| Function | | MP
 No. | Bit | A | B | C | Input | AE-6
 Entry value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assignment of the nominal value outputs to the machine axes (no function, if MP 2000. $\mathrm{X} \neq 0$) | $\begin{aligned} & \mathrm{X} \\ & \mathrm{Y} \\ & \mathrm{Z} \\ & \mathrm{IV} \\ & \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 120.0 \\ & 120.1 \\ & 120.2 \\ & 120.3 \\ & 120.4 \end{aligned}$ | | | | $\stackrel{+}{*}$ | 0 to 5
 $0=$ output 1
 $1=$ output 2
 $2=$ output 3
 $3=$ output 4
 $4=$ output 5
 $5=$ output $S^{1)}$ | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ |
| Count direction of the encoder signals | $\begin{aligned} & \mathrm{X} \\ & \mathrm{Y} \\ & \mathrm{Z} \\ & \mathrm{IV} \\ & \mathrm{~V} \end{aligned}$ | 210 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | * | - | - | $\begin{aligned} & \hline 0=\text { positive } \\ & +1=X \text { axis negative } \\ & +2=Y \text { axis negative } \\ & +4=Z \text { axis negative } \\ & +8=\text { IV. axis negative } \\ & +16=V . \text { axis negative } \\ & \hline \end{aligned}$ | (\% 00000) |
| Signal period
 (displacement per grating period; consider the screw pitch when using a rotary encoder.)
 With square-wave input signals the displacement per square-wave period must be entered. (Consider external interpolation.) | $\begin{aligned} & X \\ & Y \\ & Z \\ & Z \\ & I V \\ & V \end{aligned}$ | $\begin{aligned} & 330.0 \\ & 330.1 \\ & 330.2 \\ & 330.3 \\ & 330.4 \end{aligned}$ | | - | $\stackrel{*}{*}$ | $\begin{aligned} & 102 \\ & 102 \\ & 102 \\ & 102 \\ & 102 \end{aligned}$ | 0.1 to 1000[$\mu \mathrm{m}$] | $\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$ |
| Calculation of the signal period Path for counting pulses from MP 332.X | X Y Z IV V | $\begin{aligned} & 331.0 \\ & 331.1 \\ & 331.2 \\ & 331.3 \\ & 331.4 \\ & \hline \end{aligned}$ | | - - - - - | - | $\begin{aligned} & 02 \\ & 02 \\ & 02 \\ & 02 \\ & 02 \\ & \hline \end{aligned}$ | 0 to 99999.9999 [mm] | $\begin{aligned} & 0.02 \\ & 0.02 \\ & 0.02 \\ & 0.02 \\ & 0.02 \\ & \hline \end{aligned}$ |
| Number of counting pulses from MP 331.X | X Y Z IV V | $\begin{aligned} & 332.0 \\ & 332.1 \\ & 332.2 \\ & 332.3 \\ & 332.4 \end{aligned}$ | | - - - - - | - - - - - | $\begin{aligned} & 02 \\ & 02 \\ & 02 \\ & 02 \\ & 02 \end{aligned}$ | 1 to 16177215 [counting pulses]
 The TNC automatically calculates the signal period. $\text { signal period }[m m]=\frac{\mathrm{MP} 331}{\mathrm{MP} 332}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |

[^15]| Function | | MP No. | Bit | A | B | C | Input | | | AE-6
 Entry value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Interpolation factor of the EXE at the encoder input (TNC 415BR/FR only) | $\begin{gathered} X \\ Y \\ Y \\ Z \\ I V \\ V \end{gathered}$ | $\begin{aligned} & 340.0 \\ & 340.1 \\ & 340.2 \\ & 340.3 \\ & 340.4 \end{aligned}$ | | $\stackrel{+}{*}$ | - | - - - - - | $\begin{aligned} & 0,1,5 \\ & 0=n o \\ & 1=1-f \\ & 5=5-f \end{aligned}$ | | | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |
| Axis designation | $\begin{aligned} & \text { IV } \\ & \mathrm{V} \end{aligned}$ | $\begin{array}{r} 410.3 \\ 410.4 \\ \hline \end{array}$ | | * | * | * | $\begin{aligned} & 0=A \\ & 3=U \\ & \hline \end{aligned}$ | $\begin{aligned} & 1=B \\ & 4=V \end{aligned}$ | $\begin{aligned} & 2=C \\ & 5=W \end{aligned}$ | $\begin{aligned} & 4 \\ & 5 \\ & \hline \end{aligned}$ |
| Hirth coupling Activation | $\begin{aligned} & \text { IV } \\ & \text { V } \end{aligned}$ | $\begin{array}{r} 420.3 \\ 420.4 \\ \hline \end{array}$ | | * | - | * | $\begin{aligned} & 0=\mathrm{ina} \\ & 1=\mathrm{ac} \end{aligned}$ | | | $\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$ |
| Prescribed step | $\begin{aligned} & \text { IV } \\ & \text { V } \end{aligned}$ | $\begin{aligned} & 430.3 \\ & 430.4 \end{aligned}$ | | * | * | * | 0 to 30 | $\left[^{\circ}\right]$ | | $\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$ |

Function		MP No.	Bit	A	B	C	Input	AE-6 Entry value
Factor for multipoint axis error compensation Multipoint axis error compensation	X Y Z IV V	$\begin{aligned} & 720.0 \\ & 720.1 \\ & 720.2 \\ & 720.3 \\ & 720.4 \end{aligned}$		$\stackrel{+}{*}$	*	$\stackrel{+}{*}$	-1.0000 to $+1.0000[\mathrm{~mm} / \mathrm{m}]$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
	$\begin{aligned} & \mathrm{X} \\ & \mathrm{Y} \\ & \mathrm{Z} \\ & \mathrm{IV} \\ & \mathrm{~V} \end{aligned}$	730	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	-	-	-	$0=$ linear compensation active $+1=$ X axis, multipoint compensation active $+2=$ Y axis, multipoint compensation active $+4=$ Z axis, multipoint compensation active $+8=$ IV. axis, multipoint compensation active $+16=$ V. axis, multipoint compensation active	\% 00000
Display mode for rotary axes and PLC auxiliary axes	X Y Z IV V	$\begin{aligned} & 810.0 \\ & 810.1 \\ & 810.2 \\ & 810.3 \\ & 810.4 \end{aligned}$		$\stackrel{+}{*}$	*	$\stackrel{+}{*}$	$\begin{array}{ll} 0 \text { to } \pm 99999.9999[\mathrm{~mm}] \text { or }\left[{ }^{\circ}\right] \\ 0= & \begin{array}{l} \text { display } \pm 99999.9999 \end{array} \\ \neq 0 & \begin{array}{l} \text { (software limit switch active) } \\ \text { modulo value for display } \\ \text { (software limit switch inactive) } \end{array} \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$

Function	MP No. Bit	A	B	C	Input	AE-6 Entry value
Gantry axes Configuration	$\begin{aligned} & 850.0 \\ & 850.1 \\ & 850.2 \\ & 850.3 \\ & 850.4 \end{aligned}$	$\begin{aligned} & 08 \\ & 08 \\ & 08 \\ & 08 \\ & 08 \end{aligned}$		$\stackrel{*}{*}$	0 to 5 $\begin{aligned} & 0=\text { main axis } \\ & 1=\text { tracked to } \mathrm{X} \text { axis } \\ & 2=\text { tracked to } \mathrm{Y} \text { axis } \\ & 3=\text { tracked to } \mathrm{Z} \text { axis } \\ & 4=\text { tracked to } \mathrm{V} \text {. axis } \\ & 5=\text { tracked to } \mathrm{V} \text {. axis } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
Monitoring the synchronized movement of the coupled axes	$\begin{aligned} & 855.0 \\ & 855.1 \\ & 855.2 \\ & 855.3 \\ & 855.4 \end{aligned}$	- - - - -	$\begin{aligned} & 02 \\ & 02 \\ & 02 \\ & 02 \\ & 02 \end{aligned}$	$\begin{aligned} & 06 \\ & 06 \\ & 06 \\ & 06 \\ & 06 \end{aligned}$	```0 to 100.0000 [mm] \(0=\) monitoring inactive \(\neq 0 \quad\) maximum deviation of master and slave axes```	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
Defining the relationship between the axes	$\begin{aligned} & 860.0 \\ & 860.1 \\ & 860.2 \\ & 860.3 \\ & 860.4 \end{aligned}$	08 08 08 08 08	$\stackrel{*}{*}$	$\stackrel{*}{*}$	$\begin{array}{ll} \hline 0,1 & \\ 0= & \text { referenced to position after power-on } \\ 1= & \text { referenced to REF marks (machine datum) } \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$

Function		MP No.	Bit	A	B	C	Input	AE-6 Entry value
Software limit switch ranges Range 1 Default setting after power-on: Activation by PLC: $\mathrm{M} 2817=0, \mathrm{M} 2816=0$ strobe marker M2824	$\begin{aligned} & \mathrm{X}_{+} \\ & \mathrm{Y}_{+} \\ & \mathrm{Z}_{+} \\ & \mathrm{IV}+ \\ & \mathrm{V}_{+} \\ & \mathrm{X}_{-} \\ & \mathrm{Y}_{-} \\ & \mathrm{Z}- \\ & \mathrm{I}- \\ & \mathrm{V}_{-} \end{aligned}$	910.0 910.1 910.2 910.3 910.4 920.0 920.1 920.2 920.3 920.4					```linear axis: -99 999.9999 to +99 999.9999 [mm] rotary axis: -99 999.9999 to +99 999.9999[`]```	$\begin{gathered} \text { +99 } 999.9999 \\ " \\ " \\ " \\ " \\ \text { "99 } 999.9999 \end{gathered}$
Range 2 Activation by PLC: $\mathrm{M} 2817=0, \mathrm{M} 2816=1$ strobe marker M2824	$\begin{aligned} & \mathrm{X}_{+} \\ & \mathrm{Y}_{+} \\ & \mathrm{Z}_{+} \\ & \mathrm{IV}+ \\ & \mathrm{V}_{+} \\ & \mathrm{X}_{-} \\ & \mathrm{Y}_{-} \\ & \mathrm{Z}_{-} \\ & \mathrm{IV}_{-} \\ & \mathrm{V}_{-} \end{aligned}$	911.0 911.1 911.2 911.3 911.4 921.0 921.1 921.2 921.3 921.4		$\stackrel{*}{*}$				$\begin{gathered} \text { +99 } 999.9999 \\ " \\ " \\ " \\ \text { " } \\ \text {-99 } 999.9999 \end{gathered}$
Range 3 Activation by PLC: $\mathrm{M} 2817=1, \mathrm{M} 2816=1$ strobe marker M2824	$\begin{aligned} & \mathrm{X}_{+} \\ & \mathrm{Y}_{+} \\ & \mathrm{Z}_{+} \\ & \mathrm{IV}+ \\ & \mathrm{V}_{+} \\ & \mathrm{X}_{-} \\ & \mathrm{Y}_{-} \\ & \mathrm{Z}- \\ & \mathrm{IV}_{-} \\ & \mathrm{V}_{-} \end{aligned}$	$\begin{aligned} & 912.0 \\ & 912.1 \\ & 912.2 \\ & 912.3 \\ & 912.4 \\ & 922.0 \\ & 922.1 \\ & 922.2 \\ & 922.3 \\ & 922.4 \end{aligned}$		$\stackrel{*}{*}$				$\begin{gathered} \text { +99 } 999.9999 \\ " \\ " \\ " \\ " \\ \text { "99 } 999.9999 \end{gathered}$

Function		MP No.	Bit	A	B	C	Input	AE-6 Entry value
Datum for positioning blocks with M92 (referenced to the machine datum)	$\begin{aligned} & X \\ & \mathrm{X} \\ & \mathrm{Z} \\ & \mathrm{IV} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & 950.0 \\ & 950.1 \\ & 950.2 \\ & 950.3 \\ & 950.4 \end{aligned}$						$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
Target position for simulated tool change for TOOL CALL with block scan	$\begin{aligned} & X \\ & Y \\ & Z \\ & Z \\ & \text { IV } \\ & V \end{aligned}$	$\begin{aligned} & 951.0 \\ & 951.1 \\ & 951.2 \\ & 951.3 \\ & 951.4 \end{aligned}$		$\begin{aligned} & 08 \\ & 08 \\ & 08 \\ & 08 \\ & 08 \end{aligned}$			linear axis: $\text { -99 } 999.9999 \text { to +99 } 999.9999 \text { [mm] }$ rotary axis: $\text { -99 } 999.9999 \text { to +99 } 999.9999\left[{ }^{\circ}\right]$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
Shifting the machine datum (referenced to the REF mark of the encoder)	$\begin{aligned} & X \\ & Y \\ & Y \\ & Z \\ & I V \\ & V \end{aligned}$	$\begin{aligned} & 960.0 \\ & 960.1 \\ & 960.2 \\ & 960.3 \\ & 960.4 \end{aligned}$			$\stackrel{+}{*}$		linear axis: $\text { -99 } 999.9999 \text { to +99 } 999.9999 \text { [mm] }$ rotary axis: $\text { -99 } 999.9999 \text { to +99 } 999.9999\left[{ }^{\circ}\right]$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$

Function		MP No.	Bit	A	B	C	Input	AE-6 Entry value
Rapid traverse	$\begin{aligned} & \hline X \\ & Y \\ & \mathrm{Y} \\ & \mathrm{Z} \\ & \mathrm{IV} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 1010.0 \\ & 1010.1 \\ & 1010.2 \\ & 1010.3 \\ & 1010.4 \end{aligned}$					linear axis: 10 to 30000 [mm/min] rotary axis: 10 to 30000 [$\% / \mathrm{min}$]	10000
Manual feed	$\begin{gathered} \hline X \\ Y \\ Z \\ Z \\ I V \\ V \end{gathered}$	$\begin{aligned} & 1020.0 \\ & 1020.1 \\ & 1020.2 \\ & 1020.3 \\ & 1020.4 \end{aligned}$				-	linear axis: 10 to 30000 [mm/min] rotary axis: 10 to 30000 [$\% / \mathrm{min}$]	10000
Positioning window	$\begin{aligned} & \hline X \\ & Y \\ & Y \\ & Z \\ & I V \\ & V \end{aligned}$	$\begin{aligned} & \hline 1030.0 \\ & 1030.1 \\ & 1030.2 \\ & 1030.3 \\ & 1030.4 \end{aligned}$				$\stackrel{+}{*}$	```linear axis: 0.0001 to 2.0000 [mm] rotary axis 0.0001 to 2.0000 [`]```	0.05
Polarity of the nominal value voltage (TNC 415B/425 "/426CA) or of the nominal shaft speed (TNC 425/426PA) with positive traverse direction	$\begin{aligned} & X \\ & Y \\ & Z \\ & Z \\ & I V \\ & V \end{aligned}$	1040	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	-	-	-	$\begin{aligned} \hline 0 & =\text { positive } \\ +1 & =\mathrm{X} \text { axis negative } \\ +2 & =\mathrm{Y} \text { axis negative } \\ +4 & =\mathrm{Z} \text { axis negative } \\ +8 & =\mathrm{IV} . \text { axis negative } \\ +16 & =\mathrm{V} . \text { axis negative } \end{aligned}$	\% 00000
Analogue voltage for rapid traverse	$\begin{gathered} X \\ X \\ Y \\ Z \\ I V \\ V \end{gathered}$	$\begin{aligned} & \hline 1050.0 \\ & 1050.1 \\ & 1050.2 \\ & 1050.3 \\ & 1050.4 \end{aligned}$		$\stackrel{+}{*}$	$\stackrel{*}{*}$	-	4.5 to 9 [V] no function with TNC 426 PA (entry value: 1)	$\begin{aligned} & 9 \\ & 9 \\ & 9 \\ & 9 \\ & 9 \end{aligned}$

[^16]| Function | $\begin{array}{ll} \text { MP } \\ \text { No. } & \text { Bit } \end{array}$ | A | B | C | Input | AE-6
 Entry value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Acceleration X
 Y
 Z
 IV
 V | $\begin{aligned} & \hline 1060.0 \\ & 1060.1 \\ & 1060.2 \\ & 1060.3 \\ & 1060.4 \end{aligned}$ | | | | 0.001 to $3.0\left[\mathrm{~m} / \mathrm{s}^{2}\right]$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |
| Radial acceleration | 1070 | - | - | * | 0.0001 to $3.0\left[\mathrm{~m} / \mathrm{s}^{2}\right]$ | 1.5 |
| Integral factor | $\begin{aligned} & \hline 1080.0 \\ & 1080.1 \\ & 1080.2 \\ & 1080.3 \\ & 1080.4 \end{aligned}$ | $\stackrel{*}{*}$ | | | 0 to 65535 | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |
| Standstill monitoring | $\begin{aligned} & \hline 1110.0 \\ & 1110.1 \\ & 1110.2 \\ & 1110.3 \\ & 1110.4 \end{aligned}$ | | | - | 0.0001 to 30 [mm] | $\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$ |
| Movement monitoring | $\begin{aligned} & 1140.0 \\ & 1140.1 \\ & 1140.2 \\ & 1140.3 \\ & 1140.4 \end{aligned}$ | | | $\stackrel{+}{*}$ | 0.03 to 10 [V] for TNC $415 \mathrm{~B} / 425^{11}$ 0.03 to 10 [1000/min] for TNC 426 PA Note: entry value $10 \Rightarrow$ monitoring inactive | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |
| Time out to switch off the residual voltage on error message "Positioning Error" | 1150 | - | * | - | 0 to 65535 [s] | 0 |
| Automatic cyclical offset adjustment | 1220 | - | - | - | $\begin{aligned} & \hline 1 \text { to } 65535 \text { [s] } \\ & 0=\text { no automatic adjustment } \\ & \hline \end{aligned}$ | 1 |

[^17]| Function | | MP
 No. | Bit | A | B | C | Input | AE-6
 Entry value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reference mark evaluation
 Direction for traversing the reference marks
 Feed rate for traversing the reference marks | $\begin{aligned} & X \\ & Y \\ & Y \\ & Z \\ & \text { IV } \\ & \text { V } \end{aligned}$ | 1320 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | - | - | - | $0=$ positive
 $+1=$ X axis negative
 $+2=$ Y axis negative
 $+4=$ Z axis negative
 $+8=$ IV. axis negative
 $+16=$ V. axis negative | \% 00000 |
| | X Y Z IV V | $\begin{aligned} & 1330.0 \\ & 1330.1 \\ & 1330.2 \\ & 1330.3 \\ & 1330.4 \end{aligned}$ | | $\stackrel{*}{*}$ | $\stackrel{\rightharpoonup}{*}$ | - | linear axis:
 10 to 30000 [mm/min]
 rotary axis:
 10 to 30000 [$/ \mathrm{min}$] | 10000 |
| Feed rate for leaving the reference endposition (only if MP1350 $=2$)
 Axis sequence for reference mark traverse | $\begin{aligned} & X \\ & Y \\ & Y \\ & Z \\ & \text { IV } \\ & \text { V } \end{aligned}$ | $\begin{aligned} & 1331.0 \\ & 1331.1 \\ & 1331.2 \\ & 1331.3 \\ & 1331.4 \end{aligned}$ | | $\stackrel{*}{*}$ | - | $\stackrel{+}{*}$ | linear axis:
 10 to 500 [mm/min]
 rotary axis:
 10 to 500 [$\% / \mathrm{min}$] | $\begin{gathered} 200 \\ " \\ " \\ " \end{gathered}$ |
| | 1. axis
 2. axis
 3. axis
 4. axis
 5. axis | $\begin{aligned} & 1340.0 \\ & 1340.1 \\ & 1340.2 \\ & 1340.3 \\ & 1340.4 \end{aligned}$ | | $\stackrel{+}{*}$ | $\stackrel{+}{*}$ | $\stackrel{+}{*}$ | $\begin{array}{ll} \hline 0= & \text { no ref. mark traverse } \\ 1= & X \\ 2= & Y \\ 3= & Z \\ 4= & V \\ 5= & V \end{array}$ | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$ |
| Type of reference mark approach | $\begin{aligned} & \hline X \\ & Y \\ & Y \\ & Z \\ & \text { IV } \\ & \text { V } \end{aligned}$ | $\begin{aligned} & \hline 1350.0 \\ & 1350.1 \\ & 1350.2 \\ & 1350.3 \\ & 1350.4 \end{aligned}$ | | - | $\stackrel{+}{*}$ | - | $0=$ position encoder with distance-coded
 reference marks (1. mode)
 $1=$ position encoder without distance-coded
 reference marks
 $2=$ special function (linear measurement
 $3=$with rotary encoder)
 position encoder with distance-coded
 reference marks (2. mode) | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |

Function		$\begin{aligned} & \text { MP } \\ & \text { No. } \\ & \hline \end{aligned}$	Bit	A	B	C	Input	AE-6 Entry value
Feed forward control or trailing mode in the operating modes "Positioning with MDI" "Program Run / Single Block" "Program Run / Full Sequence"		1390		-	-	-	```0 = feed forward control 1 = trailing mode```	0
Feed forward control in all operating modes	$\begin{aligned} & X \\ & Y \\ & Y \\ & Z \\ & \text { IV } \\ & \text { V } \end{aligned}$		$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	-	02	02	bit not set: control in the operating modes "Positioning with MDI", "Program Run / Single Block" and "Program Run / Full Sequence" according to MP1390 bit set: feed forward control in all operating modes	\% 00000

Operation with Feed Forward Control

Cams for "Reference End Position":

The reference marks can either be traversed manually using the axis direction keys or automatically with the start key. It is not necessary to enter a code number for the manual traverse as was the case with preceding TNC models. The traverse direction for automatic traverse of the reference marks is defined in MP1320. In order to reverse the traverse direction at the end of the traverse range, a cam for "reference end position" is required. The trigger signals "ref. end position" are assigned to free PLC inputs. By the PLC software these PLC inputs are connected to the PLC markers M2506 and M2556 to M25599. Depending on the entry value of MP1350 the TNC behaves differently.

Linear Encoder with Distance-Coded Reference Marks (MP 1350.X = 0), Mode 1

If the trigger signal "ref. end position" is set when starting reference mark traverse, the axis moves in the direction opposite to that set in the MP1320. If the trigger signal "ref. end position" is only set during automatic traverse, the TNC ignores this signal. Thus, there must be at least two reference marks within the range of the "reference end position". Ref. mark evaluation takes place either in the range of the "ref. end position" or else beyond this range. In case of an evaluation beyond the software limit switch range, the axis automatically moves to the software limit switch after evaluation.

Linear Encoder without Distance-Coded Reference Marks (MP 1350.X = 1)

The traverse direction is automatically reversed, if the axis traverses the cam for "ref. end position". If the axis is already in the range of the "reference end position" range when starting, it moves immediately in the opposite direction. For this reason the reference mark has to be outside the "ref. end position" range.

Special Operation: Linear Measurement with a Rotary Encoder (MP1350.X = 2)

The axis automatically moves to the cam for "reference end position" at the defined feed rate (MP1330). This axis is started again at a reduced feed rate (MP1331) in the opposite direction; the first reference mark is evaluated after the end of the "reference end position" range has been reached. Then the axis is stopped. If the axis is already in the "reference end position" range when starting, it moves immediately at the reduced feed rate (MP1331) in the direction opposite to that indicated in MP1320.

Linear Encoder with Distance-Coded Reference Marks (MP1350.X = 3), Mode 2

If the trigger signal "reference end position" is set during reference mark traverse, the axis moves opposite to the direction defined in MP1320. The signal "ref. end position" is not ignored by the NC. it is only set during automatic traverse. The traverse direction is reversed immediately. Thus, no reference marks are required in the "ref. end position" range.

Function		MP No.	Bit	A	B	C	Input	AE-6 Entry value
1. block of Kv factors for operation with feed forward control	X	1510.0		*	-		0.1 to 20	1
	Y	1510.1		*	-			1
	Z	1510.2		-	-			1
	IV	1510.3		-	-			1
	V	1510.4		,	,			1
Stiction compensation Duration of stiction compensation (differential part)	X	1511.0		-	-		0 to 16777215 [$\mu \mathrm{s}$]	0
	Y	1511.1		-	-			0
	Z	1511.2		-	-			0
	IV	1511.3		-	-			0
	V	1511.4		*	-			0
Limit of extent of stiction compensation (differential part)	X	1512.0		-	-		0 to 16777215 [counting steps]	0
	Y	1512.1		-	-			0
	Z	1512.2		-	-			0
	IV	1512.3		-	-			0
	V	1512.4		,	,			0
Feed rate for stiction compensation (differential part)	X	1513.0		-	-		0 to 300000 [mm/min]	0
	Y	1513.1		-	-			0
	Z	1513.2		-	-			0
	IV	1513.3		-	-			0
	V	1513.4		-	-			0
2. block of Kv factors for operation with feed forward control M105: enable M106: inhibit	X	1515.0		-	-		0.1 to 10	1
	Y	1515.1		-	-			1
	Z	1515.2		-	-			1
	IV	1515.3		-	-			1
	V	1515.4		*	-			1
Approach speed and transient behaviour when accelerating		1520		-	-		0.1 to 10 [m/min]	1
Feed rate below which the positioning window is monitored	X	1525.0		-	02		0.1 to 10.000 [mm/min]	0
	Y	1525.1		-	02		recommended value: $0.5 \mathrm{~mm} / \mathrm{min}$	0
	Z	1525.2		-	02			0
	IV	1525.3		-	02			0
	V	1525.4		-	02			0

Operation with Servo Lag

Function		$\begin{array}{ll} \text { MP } & \\ \text { No. } & \text { Bit } \\ \hline \end{array}$	A	B	C	Input	AE-6 Entry value
Position monitoring during operation with servo lag cancellable (POSITIONING ERROR)	$\begin{gathered} X \\ Y \\ Z \\ Z \\ I V \\ V \end{gathered}$	$\begin{aligned} & 1710.0 \\ & 1710.1 \\ & 1710.2 \\ & 1710.3 \\ & 1710.4 \end{aligned}$	$\stackrel{+}{*}$	$\stackrel{*}{*}$		0 to 300 [mm]	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$
EMERGENCY STOP (GROSS POSITIONING ERROR)	$\begin{gathered} X \\ Y \\ Z \\ Z \\ I V \\ V \end{gathered}$	$\begin{aligned} & 1720.0 \\ & 1720.1 \\ & 1720.2 \\ & 1720.3 \\ & 1720.4 \end{aligned}$	$\stackrel{+}{*}$	$\stackrel{*}{*}$	$\stackrel{*}{*}$	0 to 300 [mm]	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$
1. block of Kv factors for the trailing mode	$\begin{gathered} X \\ Y \\ Z \\ Z \\ I V \\ V \end{gathered}$	$\begin{aligned} & 1810.0 \\ & 1810.1 \\ & 1810.2 \\ & 1810.3 \\ & 1810.4 \end{aligned}$	$\stackrel{+}{*}$	$\stackrel{*}{*}$	$\stackrel{\bullet}{*}$	0.1 to 10	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
2. block of Kv factors for the trailing mode M105: enable M106: inhibit	$\begin{aligned} & X \\ & Y \\ & Y \\ & Z \\ & I V \\ & V \end{aligned}$	$\begin{aligned} & 1815.0 \\ & 1815.1 \\ & 1815.2 \\ & 1815.3 \\ & 1815.4 \end{aligned}$	$\stackrel{+}{*}$	$\stackrel{*}{*}$	$\stackrel{*}{*}$	0.1 to 10	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$

Function		$\begin{array}{ll} \text { MP } & \\ \text { No. } \quad \text { Bit } \\ \hline \end{array}$	A	B	C	Input	AE-6 Entry value
Multiplication factor for Kv (not effective with M105)	$\begin{gathered} X \\ Y \\ Z \\ Z \\ I V \\ V \end{gathered}$	$\begin{aligned} & 1820.0 \\ & 1820.1 \\ & 1820.2 \\ & 1820.3 \\ & 1820.4 \end{aligned}$	$\stackrel{+}{*}$	$\stackrel{*}{*}$		0.001 to 1.000	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
Kink point	$\begin{gathered} X \\ Y \\ Z \\ Z \\ I V \\ V \end{gathered}$	$\begin{aligned} & 1830.0 \\ & 1830.1 \\ & 1830.2 \\ & 1830.3 \\ & 1830.4 \end{aligned}$	$\stackrel{+}{*}$	$\stackrel{\bullet}{*}$		0 to 100.000 [\%]	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \\ & \hline \end{aligned}$

Integral Digital Speed Control (TNC 425)

Function		$\begin{aligned} & \text { MP } \\ & \text { No. } \\ & \hline \end{aligned}$	Bit	A	B	C	Input	AE-6 Entry value
Selecting the axes with digital speed controller	X Y Z IV V	1900	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	-	-		$\begin{array}{\|ll\|} \hline 0 \text { to } 31 & \\ 0= & \text { axis with analogue controller } \\ +1= & \text { X axis with digital controller } \\ +2= & \text { Y axis with digital controller } \\ +4= & \text { Z axis with digital controller } \\ +8= & \text { IV. axis with digital controller } \\ +16= & \text { V. axis with digital controller } \\ \hline \end{array}$	\% 11111
Speed controller monitoring	X Y Z IV V	$\begin{aligned} & \hline 1910.0 \\ & 1910.1 \\ & 1910.2 \\ & 1910.3 \\ & 1910.4 \\ & \hline \end{aligned}$			$\stackrel{+}{*}$		1 to 167215 [counting steps]	$\begin{aligned} & 5000 \\ & 5000 \\ & 5000 \\ & 5000 \\ & 5000 \end{aligned}$
Integral component for the speed controller	X Y Z IV V	$\begin{aligned} & \hline 1920.0 \\ & 1920.1 \\ & 1920.2 \\ & 1920.3 \\ & 1920.4 \\ & \hline \end{aligned}$		-	$\stackrel{+}{*}$		0 to 65535	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \\ & \hline \end{aligned}$
Limitation of the integral factor for the speed controller (PT1 element)	X Y Z IV V	$\begin{aligned} & 1925.0 \\ & 1925.1 \\ & 1925.2 \\ & 1925.3 \\ & 1925.4 \end{aligned}$			-		0 to 30.000 [s] 0 = inactive (normal case) Standard value: 0.1 to 2.0 [s] entry value $2: \rightarrow$ normal effect entry value 0.1 : \rightarrow very strong effect This function should only be used, if the drive jogs during standstill due to stiction. The larger the entry value, the more the behavior resembles that of a PI controller.	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
Proportional component for the speed controller	X Y Z IV V	$\begin{aligned} & 1940.0 \\ & 1940.1 \\ & 1940.2 \\ & 1940.3 \\ & 1940.4 \end{aligned}$		$\stackrel{+}{*}$	$\stackrel{+}{*}$		0 to 65535	$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$

Function	$\begin{aligned} & \hline \text { MP } \\ & \text { No. } \end{aligned}$	Bit	A	B	C	Input	AE-6 Entry value
Factor for acceleration feedforward control of the speed controller	$\begin{aligned} & 1945.0 \\ & 1945.1 \\ & 1945.2 \\ & 1945.3 \\ & 1945.4 \end{aligned}$					0 to $9.999\left[\mathrm{~V} /\left(\mathrm{m} / \mathrm{s}^{2}\right)\right]$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
Polarity of torque signal	1950	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	*	-		$\begin{array}{ll} \hline 0 \text { to } 31 & \\ 0= & \text { positive } \\ +1= & \text { X axis negative } \\ +2= & \text { Y axis negative } \\ +4= & \text { Z axis negative } \\ +8= & \text { IV. axis negative } \\ +16= & \text { V. axis negative } \\ \hline \end{array}$	\% 00000
Selecting the measuring systems	1951	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	-	-		0 to 31 $0=2$ measuring systems for each axis: - linear encoder for position - rotary encoder for speed $+1=1$ measuring system (rotary encoder) for both position and speed (X axis) $+2=\quad \mathrm{Y}$ axis $+4=\quad Z$ axis $+8=\quad$ IV. axis $+16=\mathrm{V}$. axis	\% 00000
Ratio of grating period LS to ROD	$\begin{aligned} & 1955.0 \\ & 1955.1 \\ & 1955.2 \\ & 1955.3 \\ & 1955.4 \end{aligned}$		*			0.1 to 100 (the entry values should be >5)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$

Function		MP No. Bit	A	B	C	Input	AE-6 Entry value
Compensation for reversal spikes with digitally controlled driving axes	$\begin{aligned} & \mathrm{X} \\ & \mathrm{Y} \\ & \mathrm{Z} \\ & \mathrm{IV} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1960.0 \\ & 1960.1 \\ & 1960.2 \\ & 1960.3 \\ & 1960.4 \end{aligned}$	$\stackrel{+}{*}$			-1.0000 to $+1.0000[\mathrm{~mm}]$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$
Movement monitoring for position and speed (only for digitally controlled driving axes)	$\begin{aligned} & X \\ & Y \\ & Y \\ & Z \\ & \text { IV } \\ & \text { V } \end{aligned}$	$\begin{aligned} & 1970.0 \\ & 1970.1 \\ & 1970.2 \\ & 1970.3 \\ & 1970.4 \end{aligned}$	$\stackrel{+}{*}$			0 to 1 [mm] Note: entry value $0 \Rightarrow$ monitoring inactive	$\begin{aligned} & 0,5 \\ & 0,5 \\ & 0,5 \\ & 0,5 \\ & 0,5 \end{aligned}$
Delayed shutdown of speed controller in EMERGENCY STOP		1980	-	-		0 to 1.999 [s]	0

[^18]${ }^{2)}$ entry values depending on the motor: see table 2 on page 21.1

Table 1: Entry values depending on the power stage
The following SIEMENS power stages can be connected to TNC 426 PA:

	0AAO	OBAO	GSN1123-1AA00 OCAO ODAO				OEAO		OFAO		6SN1 123-1AB00				
							0AAO	OBAO			0CAO				
			VSA	HSA	VSA	HSA			VSA	HSA	VSA	HSA			
MP2110	14.14	25.45	50.91	50.91	79.2	79.2	158.4	158.4	198	198	14.14	25.45	50.91		
MP2120	7.07	12.72	25.45	33.94	39.6	42.42	79.2	84.85	99	120.2	7.07	12.72	25.45		

When using non-SIEMENS power stages, please contact HEIDENHAIN.

Table 2: Entry values depending on the motor
The following SIEMENS drives can be connected to TNC 426 PA:

	$\begin{array}{\|l} \hline \text { 1FT6064 } \\ \text { 6AC71 } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { 1FT6084 } \\ \text { 8AC71 } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { 1FT6086 } \\ \text { 8AC71 } \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { 1FT6062 } \\ \text { 6AH71 } \\ \hline \end{array}$	$\begin{aligned} & \text { 1FT6082 } \\ & \text { 8AH71 } \\ & \hline \end{aligned}$	1PH6103 4NG4	1PH6107 4NG4
MP2200	0	0	0	0	0	1	1
MP2210	2000	2000	2000	4500	4500	2000	2000
MP2220	2915	3080	2970	6435	6930	9900	9900
MP2230	3	4	4	3	4	2	2
MP2280	0	0	0	0	0	14.0	22.1
MP2290	0	0	0	0	0	162	189
MP2300	5.4	11.8	15.4	5.5	11.5	28.3	43.8
MP2310	21.5	46.95	61.7	22.06	62.2	45.3	70.1

When using non-SIEMENS drives, please contact HEIDENHAIN.

Function		$\begin{array}{ll} \text { MP } & \\ \text { No. } \quad \text { Bit } \end{array}$	A	B	C	Input	AE-6 Entry value
Nominal speed (synchronous motor) Kink point rpm (asynchronous motor) "	$\begin{aligned} & \hline X \\ & Y \\ & Z \\ & I V \\ & V \\ & V \end{aligned}$	$\begin{aligned} & 2210.0 \\ & 2210.1 \\ & 2210.2 \\ & 2210.3 \\ & 2210.4 \\ & 2210.5 \end{aligned}$				0 to $10000[\mathrm{rpm}]$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
Maximum shaft speed ${ }^{11}$	$\begin{aligned} & \hline X \\ & Y \\ & Z \\ & Z \\ & I V \\ & V \\ & S \end{aligned}$	$\begin{aligned} & \hline 2220.0 \\ & 2220.1 \\ & 2220.2 \\ & 2220.3 \\ & 2220.4 \\ & 2220.5 \end{aligned}$				0 to 99 999[rpm] (value from table plus 10\%) When operating with servo lag, the speed is limited to the value of MP 2220. When operating with feed forward control, the error message GROSS POSITIONING ERROR <Axis> B is generated when the value of MP 2220 is reached.	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
Number of pairs of poles ${ }^{11}$	$\begin{aligned} & \hline X \\ & Y \\ & Z \\ & Z \\ & I V \\ & V \\ & S \end{aligned}$	$\begin{aligned} & 2230.0 \\ & 2230.1 \\ & 2230.2 \\ & 2230.3 \\ & 2230.4 \\ & 2230.5 \end{aligned}$				1 to 4	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
Line count of rotary encoder (speed encoder)	$\begin{aligned} & \hline X \\ & Y \\ & Z \\ & Z \\ & I V \\ & V \\ & S \end{aligned}$	$\begin{aligned} & 2240.0 \\ & 2240.1 \\ & 2240.2 \\ & 2240.3 \\ & 2240.4 \\ & 2240.5 \end{aligned}$	-		$\stackrel{\bullet}{\bullet}$	0 to 10000 [lines per revolution] 0 = non-controlled axis (no encoder monitoring)	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$

[^19]| Function | MP No. Bit | A | B | C | Input | AE-6
 Entry value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Counting direction of the signals of the rotary encoder | $\begin{aligned} & 2250.0 \\ & 2250.1 \\ & 2250.2 \\ & 2250.3 \\ & 2250.4 \\ & 2250.5 \end{aligned}$ | | | | $\begin{aligned} & 0=\text { not inverted } \\ & 1=\text { inverted } \end{aligned}$ | 0 0 0 0 0 0 |
| Motor constant | $\begin{aligned} & 2260.0 \\ & 2260.1 \\ & 2260.2 \\ & 2260.3 \\ & 2260.4 \\ & 2260.5 \end{aligned}$ | - | | | 0 to 99.999[Nm/A] with SIEMENS drives: 0 | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |
| $\begin{array}{lc}\text { Max. motor temperature } & \mathrm{X} \\ & \mathrm{Y} \\ \mathrm{Z} \\ & \mathrm{IV} \\ & \mathrm{V} \\ & \mathrm{S}\end{array}$ | $\begin{aligned} & 2270.0 \\ & 2270.1 \\ & 2270.2 \\ & 2270.3 \\ & 2270.4 \\ & 2270.5 \end{aligned}$ | | | $\stackrel{+}{*}$ | $\begin{aligned} & \hline 0 \text { to } 255\left[{ }^{\circ} \mathrm{C}\right] \\ & 255=\text { no monitoring } \\ & \text { with SIEMENS drives: } 150 \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |
| Magnetising current ${ }^{\text {1 }}$ X
 Y
 Z
 IV
 V
 S | $\begin{aligned} & 2280.0 \\ & 2280.1 \\ & 2280.2 \\ & 2280.3 \\ & 2280.4 \\ & 2280.5 \end{aligned}$ | | | $\stackrel{+}{*}$ | 0 to 99.999[Ap] e.g. with SIEMENS motor 1PH6103/... : $9.9 \mathrm{~A} \cdot \sqrt{2}=12.72 \mathrm{Ap}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |

[^20]| Function | $\begin{array}{ll} \hline \text { MP } & \\ \text { No. } & \text { Bit } \\ \hline \end{array}$ | A | B | C | Input | AE-6
 Entry value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time constant of armature ${ }^{11}$ X
 Y
 Z
 IV
 V
 S | $\begin{aligned} & 2290.0 \\ & 2290.1 \\ & 2290.2 \\ & 2290.3 \\ & 2290.4 \\ & 2290.5 \end{aligned}$ | | | | 0 to 10 000[ms]
 Example: Calculation of time constant of the armature from the motor parameters of the SIEMENS spindle motor 1PH6107-4GN4
 SIEMENS motor parameters: $\begin{aligned} \text { P164 }=\text { nom. frequency } & =68.9 \mathrm{~Hz} \\ \mathrm{P} 168=\text { resistance of armature (cold) } & =157 \mathrm{~m} \Omega \\ \mathrm{P} 170=\text { leakage reactance of armat. } & =785 \mathrm{~m} \Omega \\ \mathrm{P} 171=\text { reactance of main field } & =12090 \mathrm{~m} \Omega \\ \mathrm{MP} 2290= & \\ \frac{(\mathrm{P} 171[\mathrm{~m} \Omega]+\mathrm{P} 170[\mathrm{~m} \Omega] \cdot 1000}{2 \cdot \Pi \cdot \mathrm{P} 164[\mathrm{~Hz}] \cdot \mathrm{P} 168[\mathrm{~m} \Omega]}[\mathrm{ms}]= & \\ =\frac{(12090+785) \cdot 1000}{2 \cdot \Pi \cdot 68,9 \cdot 157}[\mathrm{~ms}]=189[\mathrm{~ms}] & \end{aligned}$ | 0 0 0 0 0 0 |
| Nominal value of motor ${ }^{11}$ X
 (reference value for "utilization" Y
 display and for $\mathrm{I}^{2 t}$ monitoring) Z
 IV
 V
 S
 | $\begin{aligned} & 2300.0 \\ & 2300.1 \\ & 2300.2 \\ & 2300.3 \\ & 2300.4 \\ & 2300.5 \end{aligned}$ | - - - - - - | | | 0 to 100.000[A]
 MP 2300 is used to calculate the $1^{2 t}$ monitoring and the utilization display (modules 9160 and 9166) | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |
| Maximum current $^{\text {M }}$ X
 of motor Y
 Z
 IV
 V
 S
 | 2310.0 2310.1 2310.2 2310.3 2310.4 2310.5 | - - - - - - | - | | 0 to 100.000[Ap]
 The speed controller limits the maximum current to the minimum value of MP2110 and MP2310. | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |
| reserved | 2320.x | - | - | - | entry value 0 | 0 |
| reserved | 2330.x | - | - | - | entry value 0 | 0 |

[^21]| Function | | MP
 No. | Bit | A | B | C | Input | AE-6
 Entry value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Amplification for current controller | X | 2400.0 | | - | - | * | 0 to 30000 [1/V] | 0 |
| | Y | 2400.1 | | - | - | - | $0=$ controller inhibited | 0 |
| | Z | 2400.2 | | - | - | - | | 0 |
| | IV | 2400.3 | | - | - | - | | 0 |
| | V | 2400.4 | | - | - | - | | 0 |
| | S | 2400.5 | | - | - | , | | 0 |
| reserved | X | 2410.0 | | - | - | * | 0 | 0 |
| | Y | 2410.1 | | - | - | - | | 0 |
| | Z | 2410.2 | | - | - | - | | 0 |
| | IV | 2410.3 | | - | - | - | | 0 |
| | V | 2410.4 | | - | - | - | | 0 |
| | S | 2410.5 | | - | - | - | | 0 |
| Proportional factor of the current controller | X | 2500.0 | | - | - | * | 0 to $100000[A p]$ | 0 |
| | Y | 2500.1 | | - | - | - | | 0 |
| | Z | 2500.2 | | - | - | - | | 0 |
| | IV | 2500.3 | | - | - | - | | 0 |
| | V | 2500.4 | | - | - | - | | 0 |
| | S | 2500.5 | | - | - | - | | 0 |
| Integral factor of the current controller | X | 2510.0 | | - | - | * | 0 to $100000[A]$ | 0 |
| | Y | 2510.1 | | - | - | - | | 0 |
| | Z | 2510.2 | | - | - | - | | 0 |
| | IV | 2510.3 | | - | - | - | | 0 |
| | V | 2510.4 | | - | - | - | | 0 |
| | S | 2510.5 | | - | - | - | | 0 |
| reserved | X | 2520.0 | | - | - | - | 0 | 0 |
| | Y | 2520.1 | | - | - | - | | 0 |
| | Z | 2520.2 | | - | - | - | | 0 |
| | IV | 2520.3 | | - | - | - | | 0 |
| | V | 2520.4 | | - | - | - | | 0 |
| | S | 2520.5 | | - | - | - | | 0 |
| reserved | X | 2530.0 | | - | - | 02 | 0 | 0 |
| | Y | 2530.1 | | - | - | 02 | | 0 |
| | Z | 2530.2 | | - | - | 02 | | 0 |
| | IV | 2530.3 | | - | - | 02 | | 0 |
| | V | 2530.4 | | - | - | 02 | | 0 |
| | S | 2530.5 | | - | - | 02 | | 0 |

Spindle

Function	MP No.	Bit	A	B	C	Input	AE-6 Entry value
Output of the spindle speed	3010		-	-	*	$0=$ spindle speed not output	6
coded						$\begin{array}{ll} \hline 1= & \text { only if speed changes } \\ 2= & \text { with every TOOL CALL } \end{array}$	
analogue						$3=$ gear switching signal only if gear range changes $4=$ gear switching signal with every $5=$ TOOL CALL no gear switching signal	
controlled spindle for orientation						$6=$ gear switching signal only if gear range changes $7=$ gear switching signal with every $8=$ TOOL CALL	
Output of an analogue voltage at the analogue output of the spindle (only if MP3010 < 3)	3011		$\stackrel{+}{*}$	$\stackrel{+}{*}$	-	$0=$ no function $1=$ voltage is proportional to the current feed rate $2=$ voltage defined via PLC (module 9130) $3=$ voltage defined via M-function $(\mathrm{M} 200-\mathrm{M} 204)$	0
Feed rate that corresponds to an analogue voltage of 10 V (only if MP3011 = 1)	3012		*	-	-	0 to 300000 [mm/min]	0

Function	MP No. Bit	A	B	C	Input	AE-6 Entry value
LASER function with M202 Characteristic curve kink points Speed	$\begin{gathered} 3013.0 \\ 3013.1 \\ 3013.2 \\ 3013.3 \\ 3013.4 \\ 3013.5 \\ 3013.6 \\ 3013.7 \\ 3013.8 \\ 3013.9 \\ 3013.10 \\ 3013.11 \end{gathered}$				10 to 300000 [mm/min]	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$
Characteristic curve kink points Voltage	3013.1 3014.0 3014.1 3014.2 3014.3 3014.4 3014.5 3014.6 3014.7 3014.8 3014.9 3014.10 3014.11				0 to 9.999 [V]	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$
Definition of the spindle speed range	3020	04	-	-	$\begin{array}{\|l\|} \hline 0 \text { to } 99999 \\ 00991 \text { = no limitation } \\ \hline \end{array}$	00991

Function		MP No. Bit	A	B	C	Input	AE-6 Entry value
Axis halt on TOOL CALL with only a spindle speed output		3030	-	-	*	$\begin{array}{ll} 0= & \text { axis halt } \\ 1= & \text { no axis halt } \end{array}$	0
Programming the spindle speed $\mathbf{S}=\mathbf{0}$ (if MP3240.1 $=0$)		3120	-	-	-	$\begin{aligned} & 0 \Rightarrow S=0 \text { permitted } \\ & 1 \Rightarrow S=0 \text { not permitted } \end{aligned}$	0
Polarity - of S-analogue voltage (TNC 415B/425/426CA) - of nominal spindle speed (TNC 426 PA)		3130	-	*	-	$\begin{array}{\|l\|} \hline 0= \\ =\text { M03: positive } \\ \\ \text { M04: negative } \\ =\text { M03: negative } \\ \\ \text { M04: positive } \\ 2=\text { M03 and M04: positive } \\ 3= \end{array}$	0
Count direction of the spindle encoder		3140	-	-	-	$\begin{array}{\|l} \hline 0=\text { positive } \\ 1=\text { negative } \\ \hline \end{array}$	0
Line count of the spindle encoder		3142	-	-	-	$\begin{aligned} & 0=1024 \text { lines } \\ & 1=2048 \text { lines } \end{aligned}$	0
S-analogue voltage with nominal speed gear range	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & 3210.0 \\ & 3210.1 \\ & 3210.2 \\ & 3210.3 \\ & 3210.4 \\ & 3210.5 \\ & 3210.6 \\ & 3210.7 \end{aligned}$	$\stackrel{+}{*}$			0 to 9.999 [V]	$\begin{aligned} & 9 \\ & 9 \\ & 9 \\ & 9 \\ & 9 \\ & 9 \\ & 9 \\ & 9 \\ & 9 \\ & \hline \end{aligned}$
Revolutions of the motor with nominal speed (TNC 426 PA) gear range	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & 3210.0 \\ & 3210.1 \\ & 3210.2 \\ & 3210.3 \\ & 3210.4 \\ & 3210.5 \\ & 3210.6 \\ & 3210.7 \end{aligned}$	-	-		0 to 9.999 [1000/min]	$\begin{aligned} & 9 \\ & 9 \\ & 9 \\ & 9 \\ & 9 \\ & 9 \\ & 9 \\ & 9 \\ & 9 \end{aligned}$

Function	MP No.	Bit	A	B	C	Input	AE-6 Entry value
Controlled range for S-analogue output							
Min. S-analogue voltage that can be output	3240.1		-	-	-	0 to 9.999 [V]	0
Jog voltage for gear switching (markers for direction of rotation: M2490/M2491)	3240.2		-	*	-	0 to 9.999 [V]	0.1
Controlled range for S-speed output (TNC 426 PA)							
Min. motor speed that can be output	3240.1		-	-	-	0 to 9.999 [1000/min]	0
Motor speed for gear switching (markers for direction of rotation: M2490/M2491)	3240.2		-	-	*	0 to 9.999 [1000/min]	0.1
$\begin{array}{ll}\text { Limit with S-override } & \max . \\ \min .\end{array}$	$\begin{aligned} & \hline 3310.0 \\ & 3310.1 \end{aligned}$		-	*	*	0 to 150 [\%]	$\begin{gathered} 150 \\ 0 \end{gathered}$
Ramp gradient of the spindle:						0 to 1.999 [V/ms]	
- Spindle ON/OFF, M03, M04, M05;	3410.0		-	-	-		0.1
- Oriented spindle stop	3410.1		*	-	-		0.1
- "Tapping" cycle	3410.2		-	-	-		0.1
- Tapping without floating tap holder (Rigid Tapping)	3410.3		-	-	-		0.1
Ramp gradient of the spindle: (TNC 426 PA)						$0 \text { to } 1.999\left[\frac{1000 / \mathrm{min}}{\mathrm{~ms}}\right]$	
- Spindle ON/OFF, M03, M04, M05;	3410.0		-	-	-		0.1
- Oriented spindle stop	3410.1		-	-	*		0.1
- "Tapping" cycle	3410.2		-	-	-		0.1
- Tapping without floating tap holder (Rigid Tapping)	3410.3		-	-	-		0.1

Function		MP No.	Bit	A	B	C	Input	AE-6 Entry value
Transient response of the spindle: - Spindle ON/OFF, M03, M04, M05; - Oriented spindle stop - "Tapping" cycle - "Rigid Tapping" cycle		$\begin{aligned} & 3415.0 \\ & 3415.1 \\ & 3415.2 \\ & 3415.3 \end{aligned}$		-	- - - -		0 to 1000[ms]	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
Positioning window for the spindle		3420		*	*	-	0 to 65535 [increments]	10
Spindle pre-set		3430		-	-	-	0 to 360 [$\left.{ }^{\circ}\right]$	0
Kv factor for the spindle (per gear range) gear range	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & 3440.0 \\ & 3440.1 \\ & 3440.2 \\ & 3440.3 \\ & 3440.4 \\ & 3440.5 \\ & 3440.6 \\ & 3440.7 \end{aligned}$		$\stackrel{+}{*}$			0.1 to 10	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$

Integral PLC

Function	MP No. Bit	A	B	C	Input	AE-6 Entry value
PLC program from RAM or from EPROM	4010	-	-	-	$\begin{aligned} & +0=\text { EPROM operation } \\ & +1=\text { RAM operation } \end{aligned}$	0
PLC compatibility to TNC 415/425 convert axis words W1024ff to markers convert new markers into old markers convert configuration bits from MP4210 into markers error markers are available non-volatile markers in the range M1000 to M1999	4020 0 1 2 3 4	-	-	-	$\begin{aligned} & 0 \text { to } 31 \\ & \text { corresponding bit }=0 \Rightarrow \text { function inactive } \\ & \text { corresponding bit }=1 \Rightarrow \text { function active } \end{aligned}$	\%00000
Automatic lubrication X Y Z IV V	$\begin{aligned} & \hline 4060.0 \\ & 4060.1 \\ & 4060.2 \\ & 4060.3 \\ & 4060.4 \\ & \hline \end{aligned}$	$\stackrel{+}{*}$			0 to 65535 [65 $536 \mu \mathrm{~m}$]	$\begin{gathered} 100 \\ 200 \\ 300 \\ 400 \\ 0 \\ \hline \end{gathered}$
Maximum change of the temperature compensation per PLC scan in the PLC words W576 - W584	4070	-	-	-	0.0001 to 0.005 [mm]	0.0001

Function	$\begin{aligned} & \text { MP } \\ & \text { No. Bit } \end{aligned}$	A	B	c	Input	AE-6 Entry value
$\begin{array}{\|ll} \text { PLC: } & \text { Time for } \\ \text { T 0-T } 29 \end{array}$	4110.0 4110.1 4110.2 4110.3 4110.4 4110.5 4110.6 4110.7 4110.8 4110.9 4110.10 4110.11 4110.12 4110.13 4110.14 4110.15 4110.16 4110.17 4110.18 4110.19 4110.20 4110.21 4110.22 4110.23 4110.24 4110.25 4110.26 4110.27 4110.28 4110.29				0 to 65535 [PLC cycles]	$\begin{gathered} 100 \\ 22 \\ 50 \\ 100 \\ 4 \\ 5 \\ 5 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 25 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$

Function	MP No. Bit	A	B	C	Input	AE-6 Entry value
PLC: Pre-set values for counters 11-31	4120.11 4120.12 4120.13 4120.14 4120.15 4120.16 4120.17 4120.18 4120.19 4120.20 4120.21 4120.22 4120.23 4120.24 4120.25 4120.26 4120.27 4120.28 4120.29 4110.30 4110.31					$\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 20 \\ & 21 \\ & 22 \\ & 23 \\ & 24 \\ & 25 \\ & 26 \\ & 27 \\ & 28 \\ & 29 \\ & 30 \\ & 31 \end{aligned}$
Fast PLC input Defining the fast input	4130	-	-	-	0 to 254	0
Defining the active level of the fast input	4131	-	*	-	$\begin{aligned} & 0=\text { activation with LOW level } \\ & 1=\text { activation with HIGH level } \end{aligned}$	0

Function		$\begin{aligned} & \text { MP } \\ & \text { No. } \\ & \hline \end{aligned}$	Bit	A	B	C	Input	AE-6 Entry value
Setting a number	D768	4210.0		-	-	-	-99 999.9999 to +99 999.9999 [mm] or []	+10
	D772	4210.1		-	-	-		+1
	D776	4210.2		-	-	-		+2
	D780	4210.3		-	-	-		+3
	D784	4210.4		-	-	-		+4
	D788	4210.5		-	-	-		+5
	D792	4210.6		-	-	-		+6
	D796	4210.7		-	-	-		+7
	D800	4210.8		*	-	-		+8
	D804	4210.9		-	-	-		+9
	D808	4210.10		-	-	-		+10
	D812	4210.11		-	-	-		+11
	D816	4210.12		-	-	-		+12
	D820	4210.13		-	-	-		+13
	D824	4210.14		-	-	-		+14
	D828	4210.15		-	-	-		+15
	D832	4210.16		-	-	-		+16
	D836	4210.17		*	-	-		+17
	D840	4210.18		-	-	-		+18
	D844	4210.19		-	-	-		+19
	D848	4210.20		-	-	-		+20
	D852	4210.21		-	-	-		+21
	D856	4210.22		-	-	-		+22
	D860	4210.23		-	-	-		+23
	D864	4210.24		-	-	-		+24
	D868	4210.25		-	-	-		+25
	D872	4210.26		-	-	-		+26
	D876	4210.27		-	-	-		+27
	D880	4210.28		-	-	*		+28
	D884	4210.29		-	-	-		+29
	D888 D892	$\begin{aligned} & 4210.30 \\ & 4210.31 \end{aligned}$		-	-	-		+30 +31

Function			MP No.	Bit	A	B	C	Input	AE-6 Entry value
Setting a number		D896	4210.32		*	*	*		+0
		D900	4210.33		-	-	-		+0
		D904	4210.34		-	-	-		+0
		D908	4210.35		-	-	-		+0
		D912	4210.36		-	-	-		+0
		D916	4210.37		-	-	-		+0
		D920	4210.38		-	-	-		+0
		D924	4210.39		-	-	-		+0
		D928	4210.40		-	-	-		+0
		D932	4210.41		-	-	-		+0
		D936	4210.42		*	-	-		+0
		D940	4210.43		-	-	-		+0
		D944	4210.44		-	-	-		+0
		D948	4210.45		-	-	-		+0
		D952	4210.46		-	-	-		+0
		D956	4210.47		*	-	-		+0
Machine parameters with multiple function	W960	X	4220.0		*	*	*	10 to 30000	1800
	W962	Y	4220.1		*	*	-	- setting a number in PLC	1800
	W964	Z	4220.2		-	-	*	or	1800
	W966	IV	4220.3		-	-	-	- feed rate for reapproaching the contour	1800
	W968	V	4220.4		-	-	-	[mm/min] or [$/ \mathrm{min}$]	1800
Setting a number (readable with module9032)			4230.0		-	*	-	-99 999.9999 to +99 999.9999 [mm]	0
					.				-
					.		.		-
			4230.31		.	-	.		-

| Function | MP
 No. | Bit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | A

[^22]
Adaptation of the Data Interface

Function	MP No. Bit	A	B	C	Input	AE-6 Entry value
Inhibiting a data interface	5000	-	*	-	$0=$ no interface inhibited $1=$ RS-232 inhibited $2=$ RS-422 inhibited	0
Data format and transfer stop operating mode EXT1 operating mode EXT2 operating mode EXT3 (PLC)	$\begin{aligned} & 5020.0^{*} \\ & 5020.1^{*} \\ & 5020.2^{*} \end{aligned}$	-	$\stackrel{\rightharpoonup}{*}$	-	0 to 255	$\begin{aligned} & 168 \\ & 168 \\ & 168 \end{aligned}$
7 or 8 data bits	0				$\begin{array}{ll} \hline \boldsymbol{+ 0}= & 7 \text { data bits, bit } 8=\text { parity } \\ +1= & 8 \text { data bits, bit } 8=0, \text { bit } 9=\text { parity } \\ \hline \end{array}$	
Block check character	1				$\begin{array}{ll} \hline+\mathbf{0}= & \text { BCC character optional } \\ +2= & \text { control character not BCC } \\ \hline \end{array}$	
Transmission stop through RTS	2				$\begin{array}{ll} +\mathbf{+ 0}= & \text { inactive } \\ +4= & \text { active } \\ \hline \end{array}$	
Transmission stop through DC3	3				$\begin{array}{ll} +0= & \text { inactive } \\ +\mathbf{8}= & \text { active } \\ \hline \end{array}$	
Character parity even/odd	4				$\begin{array}{ll} \hline \mathbf{+ 0}= & \text { even } \\ +16= & \text { odd } \\ \hline \end{array}$	
Character parity on/off	5				$\begin{array}{ll} +0= & \text { off } \\ \mathbf{+ 3 2}= & \text { on } \\ \hline \end{array}$	
Number of stop bits	$\begin{aligned} & \hline 6 \\ & 7 \end{aligned}$				$\begin{array}{\|cl} \hline+64 & \rightarrow \text { bit } 6=1 \\ \mathbf{+ 1 2 8} & \rightarrow \text { bit } 7=1 \\ \text { bit } 6 & \text { bit } 7 \\ 0 & 1=11 / 2 \text { stop bits } \\ 1 & 0=2 \text { stop bits } \\ 0 & 1=1 \text { stop bit } \\ 1 & 1=1 \text { stop bit } \end{array}$	

[^23]| Function | $\begin{array}{ll} \text { MP } \\ \text { No. } & \text { Bit } \end{array}$ | A | B | C | Input | AE-6
 Entry value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Operating mode for EXT1
 EXT2
 EXT3 (PLC) | $\begin{aligned} & 5030.0^{*} \\ & 5030.1^{*} \\ & 5030.2^{*} \end{aligned}$ | - | $\stackrel{+}{*}$ | - | $\begin{array}{ll} 0= & \text { "standard data transfer" } \\ 1= & \text { "blockwise transfer" } \end{array}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ |
| Data transfer rate for PLC coupling (EXT3) | 5040 | - | - | - | $\begin{array}{\|ll\|} \hline 0 \text { to } 9 & \\ 0=110 \mathrm{Bd} & 5=2400 \mathrm{Bd} \\ 1=150 \mathrm{Bd} & 6=4800 \mathrm{Bd} \\ 2=300 \mathrm{Bd} & 7=9600 \mathrm{Bd} \\ 3=600 \mathrm{Bd} & 8=19200 \mathrm{Bd} \\ 4=1200 \mathrm{Bd} & 9=38400 \mathrm{Bd} \\ \hline \end{array}$ | 7 |
| ```Control characters for "Blockwise Transfer" ASCII character for beginning of program (STX) EXT1 EXT2 EXT3 (PLC)``` | $\begin{aligned} & 5200.0^{*} \\ & 5200.1^{*} \\ & 5200.2^{*} \end{aligned}$ | - | $\stackrel{+}{*}$ | $\begin{aligned} & 102 \\ & 102 \\ & 102 \end{aligned}$ | 0 to 127 | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ |
| ASCII character for end of program
 EXT1
 EXT2
 EXT3 (PLC) | $\begin{aligned} & 5201.0^{*} \\ & 5201.1^{*} \\ & 5201.2^{*} \\ & \hline \end{aligned}$ | - | $\stackrel{+}{*}$ | $\begin{aligned} & 102 \\ & 102 \\ & 102 \\ & \hline \end{aligned}$ | 0 to 127 | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ |
| ASCII character for file type (for data transfer)
 EXT1
 EXT2
 EXT3 (PLC) | $\begin{aligned} & \text { 5202.0* } \\ & \text { 5202.1* } \\ & \text { 5202.2* } \end{aligned}$ | - | - | $\begin{aligned} & 102 \\ & 102 \\ & 102 \end{aligned}$ | 0 to 127 | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ |

[^24]$\left.\begin{array}{|ll|l|l|l|l|l|l|}\hline \text { Function } & & \begin{array}{c}\text { MP } \\ \text { No. }\end{array} & \text { Bit } & \text { A } & \text { B } & \text { C } & \text { Input } \\ \text { AE-6 } \\ \text { Entry value }\end{array}\right]$

* accessible via code number 123

Function		MP No.	Bit	A	B	C	Input	AE-6 Entry value
ASCII character for positive acknowledgement EXT1 EXT2 EXT3 (PLC)	(ACK)	$\begin{aligned} & 5208.0^{*} \\ & 5208.1^{*} \\ & 5208.2^{*} \end{aligned}$		$\stackrel{ }{*}$	*	$\begin{aligned} & 102 \\ & 102 \\ & 102 \end{aligned}$	0 to 127	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$
ASCII character for negative acknowledgement EXT1 EXT2 EXT3 (PLC)	(NAK)	$\begin{aligned} & 5209.0^{*} \\ & 5209.1^{*} \\ & 5209.2^{*} \end{aligned}$		$\stackrel{+}{*}$	$\stackrel{+}{*}$	$\begin{aligned} & 102 \\ & 102 \\ & 102 \\ & \hline \end{aligned}$	0 to 127	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$
ASCII character for end of transfer EXT1 EXT2 EXT3 (PLC)	(EOT)	$\begin{aligned} & 5210.0^{*} \\ & 5210.1^{*} \\ & 5210.2^{*} \end{aligned}$		-	$\stackrel{\rightharpoonup}{*}$	$\begin{aligned} & 102 \\ & 102 \\ & 102 \\ & \hline \end{aligned}$	0 to 127	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$

* accessible via code number 123

3D-Touch Probe (General Parameters)

Function	MP No.	Bit	A	B	C	Input	AE-6 Entry value
Selection of touch trigger probe	6010*		-	-		$\begin{aligned} & 0=\text { transmission via cable (TS 120) } \\ & 1=\text { infrared transmission (TS 510) } \\ & \hline \end{aligned}$	0
Probing feed rate	6120*		-	-		10 to 3000 [mm/min]	80
Maximum measuring range	6130*		-	-		0.001 to 99999.9999 [mm]	1
Safety clearance over measurement point for automatic measurement	6140*		-	-		0.001 to 99999.9999 [mm]	1
Rapid traverse for probe cycle	6150*		-	-		10 to 10000 [mm/min]	2000
M-function for $\mathbf{1 8 0}^{\circ}$ spindle rotation to compensate the center misalignment of the stylus	6160*		-	04		```0 = function inactive 1 to 88= number of M-function for probing 1 = oriented spindle stop via NC 0 = function inactive +1 to 88 = number of M function for oriented spindle stop via PLC```	0 0

Connection of Measuring Touch Probe or Touch Trigger Probe

Function	MP No.	Bit	A	B	C	Input
Selecting the touch probe (probing and digitizing cycles)	$6200 *$	10	$*$		$0=$ touch trigger probe $1=$ measuring touch probe	0

* accessible via code number 123

Digitizing with 3D-Touch Probe

Function	$\begin{aligned} & \text { MP } \\ & \text { No. } \end{aligned}$	Bit	A	B	C	Input	AE-6 Entry value
Number of oscillations in normal direction	6210		*	*	-	0 to $65.535[1 / \mathrm{sec}]$	0
Lubrication of touch probe axis - displacement for lubrication at the end of a line - time intervals for lubrication	6220		-	-	*	0.000 to 999.999 [mm]	0
	6221		-	*	*	0 to 65535 [min]	0
Feed rate in normal direction	6230		-	-	*	0 to 1000 [mm/min]	0
Maximum deflection of the stylus Output of M90 on NC blocks of digitized data	6240		-	*	-	0 to 10 [mm]	0
	6260		*	*	*	$\begin{aligned} & 0=\text { no output } \\ & 1=\text { output } \end{aligned}$	0
Rounding of decimal places (NC blocks)	6270		-	*	-	0 = output in $0.001 \mathrm{~mm}(1 \mu \mathrm{~m})$ 1 = output in $0.01 \mathrm{~mm}(10 \mu \mathrm{~m})$ 2 = output in $0.0001 \mathrm{~mm}(0.1 \mu \mathrm{~m})$	0

Function	MP No. Bit	A	B	C	Input	AE-6 Entry value
Deflection depth of stylus	$6300{ }^{11}$	10	-	-	0.1 to 2.0000 [mm]	1
Deflection depth of stylus	6310	-	-	-	0.1 to 2.0000 [mm]	1
Counting direction of the encoders in the touch probe	6320 0 1 2	10	10	-	$\begin{aligned} & \hline 0=\text { positive } \\ & +1=X \text { axis negative } \\ & +2=Y \text { axis negative } \\ & +4=Z \text { axis negative } \\ & \hline \end{aligned}$	0
Calculating the center offset when calibrating the TM 110	6321	-	*	*	$\begin{aligned} & 0=\text { calibrate and measure center offset } \\ & 1=\text { calibrate without measuring center offset } \end{aligned}$	0
Allocation of the touch probe axes to the machine axes machine axis X machine axis $\quad Y$ machine axis $\quad Z$	$\begin{aligned} & 6322.0 \\ & 6322.1 \\ & 6322.2 \end{aligned}$	-	-	-	$\begin{aligned} & 0=\text { touch probe axis } X \\ & 1=\text { touch probe axis } Y \\ & 2=\text { touch probe axis } Z \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$
Maximum deflection of the stylus	6330	10	10	-	0.1 to 4 [mm]	3
Minimum deflection of the stylus	6340	112	112	-	0.001 to 0.5 [mm]	0.005
Feed rate for positioning to the MIN point and contour approach	6350	10	*	-	10 to 3000 [mm/min]	300
Feed rate for probing in measuring cycles	6360	10	-	-	10 to 3000 [mm/min]	1000
Rapid traverse for probing	6361	10	-	-	10 to 10000 [mm/min]	2000
Feed rate reduction if the stylus (TM 110) is deflected away from its path	6362	-	-	-	$\begin{aligned} & 0=\text { feed reduction inactive } \\ & 1=\text { feed reduction active } \end{aligned}$	0

${ }^{11}$ with special software and for TNC 426 this function has been shifted to MP 6310!

Function		Bit	A	B	c	Input	AE-6 Entry value
Kv factor for column control	6370		10	-	-	0.1 to 10	1
Factor for friction compensation	6380		10	-	-	0 to 0.999	0.1
Target window for contour lines	6390		10	-	-	0.1 to 4.0	1

Tool Calibration with TT 110

| Function | MP
 No. | Bit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | A

Function	MP No. Bit	A	B	C	Input	AE-6 Entry value
Safety zone around the stylus of TT 110 for pre-positioning	6540	-	-		0.001 to 99999.9999 [mm]	10
Rapid traverse in the probing cycle	6550	-	-		10 to 10000 [m/min]	10
M function for oriented spindle stop for measuring individual cutting edges	6560	-	-		```-1 = oriented spindle stop via NC \(0=\) function inactive 1 to 88 = number of M function for oriented spindle stop via PLC```	10
Maximum permissible surface cutting speed at the cutting edges of the tool	6570	-	-		1.0000 to 120.0000 [m/min]	100
Center coordinates of the TT 110 stylus referenced to the machine datum	$\begin{aligned} & 6580.0 \\ & 6580.1 \\ & 6580.2 \end{aligned}$	-	$\stackrel{ }{*}$		- 99999.9999 to + 99999.9999 [mm]	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$

Tapping

Function	$\begin{array}{ll} \text { MP } \\ \text { No. } \quad \text { Bit } \end{array}$	A	B	C	Input	AE-6 Entry value
Minimum feed override when tapping	7110.0	*	-	-	0 to 150 [\%]	95
Maximum feed override when tapping	7110.1	-	-	*	0 to 150 [\%]	105
Dwell time for change of direction of spindle rotation in a tapping cycle	7120.0	-	-	-	0 to 65.535 [s]	0
Spindle run-on time in a tapping cycle (only effective with BCD output of the spindle speed)	7120.1	-	-	-	0 to 65.535 [s]	0
Spindle slow-down time after reaching the boring depth	7120.2	*	*	-	0 to 65.535 [s]	0
Tapping without floating tap holder - run-in behaviour of the spindle	7130	-	-	-	0.001 to 10 [$/ \mathrm{min}$]	0.5
- transient response of the spindle during acceleration	7140	*	-	-	0.01 to 0.999	0.15
Positioning window for tool axis	7150	-	-	-	0.0001 to 2 [mm]	0.05
Oriented spindle stop at the beginning of cycle 17 "Rigid Tapping"	7160	-	-	-	$0=$ spindle orientation is executed $1=$ spindle orientation is not executed	1

Display and Programming

Function		MP No.	Bit	A	B	C	Input	AE-6 Entry value
Programming station		7210*		-	-	-	$\begin{aligned} & 0=\text { control } \\ & 1=\text { programming station: PLC active } \\ & 2=\text { programming station: PLC inactive } \\ & \hline \end{aligned}$	0
POWER INTERRUPTED		7212		-	*	-	$0=$ press [CE] to confirm the message $1=$ message is confirmed automatically	1
Block number increment size (for ISO programming)		7220*		-	-	-	$\begin{aligned} & 0 \text { to } 250 \\ & 0=\quad \text { no generation } \end{aligned}$	0
Maximum length of file names when opening a file		7222*		-	-	102	$0=$ max. 8 characters $1=$ max. 12 characters $2=$ max. 16 characters	
Disabling file types (for selection, table of contents and ext. data transfer) HEIDENHAIN programs ISO programs Tool tables Datum tables Pallet tables ASCII (text) files PLC help files Measuring point tables	(.H) (.I) (.T) (.D) (.P) (.A) (.HLP) (.PNT)	7224.0*	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	$\stackrel{*}{08}$	*	$\stackrel{\bullet}{*}$	$0=$ no file type disabled $+1=$ disabled $+2=$ disabled $+4=$ disabled $+8=$ disabled $+16=$ disabled $+32=$ disabled $+64=$ disabled $+128=$ disabled	\% 00000000

* accessible via code number 123

Function	MP No. Bit	A	B	C	Input	$\begin{gathered} \text { AE-6 } \\ \text { Entry value } \end{gathered}$
Protecting file types HEIDENHAIN programs ISO programs Tool tables Datum tables Pallet tables ASCII (text) files PLC help files Measuring point tables (.PNT)	$\begin{array}{ll} \hline 7224.1^{*} & \\ & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ \hline \end{array}$	$\begin{aligned} & \bullet \\ & 08 \\ & 08 \end{aligned}$		$\stackrel{\bullet}{*}$	$0=$ no file type protected $+1=$ protected $+2=$ protected $+4=$ protected $+8=$ protected $+16=$ protected $+32=$ protected $+64=$ protected $+128=$ protected	\% 00000000
Preset size Pallet table Datum table	$\begin{aligned} & 7226.0^{*} \\ & 7226.1^{*} \end{aligned}$				$\begin{aligned} 0 \text { to } 255= & \text { number of reserved entries } \\ & \text { (can be expanded via soft key) } \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$
Size of NC memory for DNC mode Minimum Maximum	$\begin{aligned} & 7228.0 \\ & 7228.1 \end{aligned}$	$\begin{aligned} & 08 \\ & 08 \end{aligned}$	-	-	1 to 1024 [kBytes] 1 to 1024 [kBytes]	$\begin{gathered} 1 \\ 100 \end{gathered}$
Length of program - to check the program - up to which FK blocks are permitted	$\begin{aligned} & 7229.0 \\ & 7229.1 \end{aligned}$			-	100 to 9999	100
Changing the dialog language	7230*	-	-	-	$\begin{aligned} & 0=1 . \text { language } \\ & 1=2 . \text { language } \end{aligned}$	0
Changing the dialog language NC dialog PLC dialog (OEM cycles, USER parameters) PLC error messages	$\begin{aligned} & 7230.0 \\ & 7330.1 \\ & 7230.2 \end{aligned}$		-	$\stackrel{\bullet}{*}$	$0=$ English $6=$ Portuguese $1=$ German $7=$ Swedish $2=$ Czech $8=$ Danish $3=$ French $9=$ Finnish $4=$ Italian $10=$ Dutch $5=$ Spanish	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
Deviation from Greenwich time	7235	-	-	-	```-23 to +23 [hours] \(0=\) Greenwich time 1 = CET \(2=\) Central European summer time The factory setting of the internal clock of the control is Greenwich time. To adapt the time of the program manager to the local time, the difference between local time and Greenwich time must be entered in MP 7235.```	

* accessible via code number 123

Function	$\begin{array}{ll} \text { MP } & \\ \text { No. } & \text { Bit } \end{array}$	A	B	C	Input	AE-6 Entry value
Inhibiting program entry if PGM No. = No. of OEM cycle	7240*	-	-	-	$\begin{array}{\|l\|l\|} \hline 0 & =\text { inhibited } \\ 1 & =\text { not inhibited } \\ \hline \end{array}$	1
Inhibiting HEIDENHAIN cycles cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6 cycle 7 cycle 8 cycle 9 cycle 10 cycle 11 cycle 12 cycle 13 cycle 14 cycle 15	7245.0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	-	-	-	$\begin{aligned} & 0 \text { to } 65535 \\ & \text { Bit }=0 \Rightarrow \text { cycle not inhibited } \\ & \text { Bit }=1 \Rightarrow \text { cycle inhibited } \end{aligned}$	\$ 0000
cycle 16 cycle 17 cycle 18 cycle 19 cycle 20 cycle 21 cycle 22 cycle 23 cycle 24 cycle 25 cycle 26 cycle 27 cycle 28 cycle 29 cycle 30 cycle 31	7245.1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	-	-	-	$\begin{aligned} & 0 \text { to } 65535 \\ & \text { Bit }=0 \Rightarrow \text { cycle not inhibited } \\ & \text { Bit }=1 \Rightarrow \text { cycle inhibited } \end{aligned}$	\$ 0000

Function	$\begin{array}{ll} \text { MP } \\ \text { No. } & \text { Bit } \end{array}$	A	B	C	Input	AE-6 Entry value
Disable paraxial positioning blocks with $\mathbf{R +} / \mathbf{R}$ - compensation	7246	*	*	*	$\begin{aligned} & 0=\text { enabled } \\ & 1=\text { disabled } \end{aligned}$	0
Difference between O-parameter numbers for DLG-DEF block and DLG-CALL block in OEM cycle	7250	-	-	-	```0 to 50 0 if only "DLG-CALL" blocks```	0
Number of global Q-parameters transferred form OEM cycle to calling program	7251	-	-	-	$\begin{aligned} & 0 \text { to } 100 \\ & 40=\text { the Q-parameters } \mathrm{Q} 60 \text { to } \mathrm{Q} 90 \text { are global } \end{aligned}$	0
Central tool file	7260*	-	-	-	0 to 254: central tool file entry value $=$ number of tools $0=$ no central tool file	254
Number of tools with pocket number	7261*	-	-	-	0 to 254	254

* accessible via code number 123

Function	MP No. Bit	A	B	C	Input	AE-6 Entry value
Items in the tool table (.T file) that can be displayed and output via interface: NAME (tool name) L (tool length) R (tool radius 1) R2 (tool radius 2) DL (oversize tool length) DR (oversize tool radius 1) DR2 (oversize tool radius 2) TL (tool locked) RT (replacement tool) TIME1 (max. tool life) TIME2 (max. tool life with TOOL CALL) CUR.TIME DOC (commentary on tool) CUT (number of cutting edges) LTOL (tolerance for tool length) RTOL (tolerance for tool radius) DIRECT (cutting direction of the tool) PLC (PLC status) TT: L-OFFS (tool offset, length) TT: R-OFFS (tool offset, radius) LBREAK (breakage tolerance, tool length) RBREAK (breakage tolerance, tool radius)	$\begin{array}{\|c} \hline 7266.0 \\ 7266.1 \\ 7266.2 \\ 7266.3 \\ 7266.4 \\ 7266.5 \\ 7266.6 \\ 7266.7 \\ 7266.8 \\ 7266.9 \\ 7266.10 \\ 7266.11 \\ 7266.12 \\ 7266.13 \\ 7266.14 \\ 7266.15 \\ 7266.16 \\ 7266.17 \\ 7266.18 \\ 7266.19 \\ 7266.20 \\ 7266.21 \\ \hline \end{array}$				```0 = not displayed 1-99 = position of the element in the tool table smallest value = first position highest value = last position```	$\begin{gathered} 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ \hline \end{gathered}$
Items in the pocket table (TOOL.P file) \mathbf{T} (tool number) $\mathbf{S T}$ (replacement tool) F (fixed pocket) \mathbf{L} (locked pocket) PLC (PLC status)	$\begin{aligned} & 7267.0 \\ & 7267.1 \\ & 7267.2 \\ & 7267.3 \\ & 7267.4 \end{aligned}$		$\stackrel{+}{*}$	$\stackrel{+}{*}$	```0 = not displayed 1-99= position of the element in the tool table smallest value = first position highest value = last position```	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & \hline \end{aligned}$

* accessible via code number 123

Function		MP No.	Bit	A	B	C	Input	AE-6 Entry value
Display of the feed rates in the MANUAL operating modes		7270		-	-	-	$0=$ display of the axis feed rate only when an axisdirection key is pressed (axis-specific feed rate from MP1020.X) $1=$ display of the axis feed rate before operating an axis-direction key (smallest value from MP1020.X for all axes)	0
Decimal sign		7280*		-	-	-	$\begin{aligned} & 0=\text { decimal comma } \\ & 1=\text { decimal point } \end{aligned}$	0
Tool length in nominal / actual value display		7285*		-	-	-	0 = tool length ignored 1 = tool length taken into account	0
Display step	$\begin{aligned} & \hline X \\ & Y \\ & Y \\ & Z \\ & I V \\ & V \end{aligned}$	$\begin{gathered} 7290.0 \\ * \\ 7290.1 \\ * \\ 7290.2 \\ * \\ 7290.3 \\ * \\ 7290.4 \\ * \end{gathered}$			$\stackrel{+}{*}$		$\begin{aligned} & 0=0.1 \mathrm{~mm} \text { or } 0.1^{\circ} \\ & 1=0.05 \mathrm{~mm} \text { or } 0.05^{\circ} \\ & 2=0.01 \mathrm{~mm} \text { or } 0.01^{\circ} \\ & 3=0.005 \mathrm{~mm} \text { or } 0.005^{\circ} \\ & 4=0.001 \mathrm{~mm} \text { or } 0.001^{\circ} \\ & 5=0.0005 \mathrm{~mm} \text { or } 0.0005^{\circ} \\ & 6=0.0001 \mathrm{~mm} \text { or } 0.0001^{\circ} \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$
Inhibiting datum setting (axis keys and soft key)	$\begin{aligned} & X \\ & Y \\ & Y \\ & Z \\ & I V \\ & V \end{aligned}$	7295*	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	-	-	-	$\begin{aligned} & 0=\text { not disabled } \\ & +1=X \text { axis disabled } \\ & +2=Y \text { axis disabled } \\ & +4=Z \text { axis disabled } \\ & +8=\mathrm{V} \text { axis disabled } \\ & +16=\mathrm{V} \text { axis disabled } \end{aligned}$	0
Datum setting with axis keys		7296		08	-	-	$0=$ datum can be set with axis keys and soft key 1 = datum can be set with soft key only	0

* accessible via code number 123

Function	MP No. Bit	A	B	C	Input	AE-6 Entry value
Cancelling - status data (S) - TOOL data (T) - O-parameters (\mathbf{Q}) with M02, M30, END PGM	$\begin{array}{ll} \hline 7300 & \\ & 0 \\ & 1 \\ & 2 \end{array}$	-	-	-	$0 \text { to } 7$program end program selection $0=$ $1=$ $2=$ $3=$ $4=$ $5=$ $6=$ $7=$	0
Graphics display - 3-plane display - rotation of the coordinate system in the machining plane - BLK form after datum shift - display of cursor position in 3-plane display	$\begin{array}{ll} \hline 7310^{*} & 0 \\ & 1 \\ & 2 \\ & 3 \end{array}$	-	-	-	$\begin{aligned} & +0=\text { German standard } \\ & +1=\text { American standard } \\ & \hline+0=\text { no rotation } \\ & +2=\text { coordinate system is rotated by }+90^{\circ} \\ & \hline+0=\text { BLK form will not shift } \\ & +4=\text { BLK form will shift } \\ & \hline+0=\text { not shown } \\ & +8=\text { cursor position shown } \\ & \hline \end{aligned}$	0

* accessible via code number 123

Function	$\begin{array}{ll} \text { MP } & \\ \text { No. } & \text { Bit } \\ \hline \end{array}$	A	B	C	Input	AE-6 Entry value
Graphic simulation of a program without TOOL CALL or without infeed movement in the tool axis in "Program Run" and "Test Run"						
Tool radius	7315*	-	-	-	0 to 99999 [mm]	0
Penetration depth (from top surface of the blank)	7316*	-	-	-	0 to 99999 [mm]	0
M function to start the simulation	7317.0*	-	-	-	0 to 88	0
M function ton interrupt the simulation	7317.1*	-	-	-	0 to 88	0

User Parameters

Function		MP No. Bit	A	B	C	Input	AE-6 Entry value
USER Parameters							
Determination of the USER parameters	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	$\begin{gathered} 7330.0 \\ 7330.1 \\ 7330.2 \\ 7330.3 \\ 7330.4 \\ 7330.5 \\ 7330.6 \\ 7330.7 \\ 7330.8 \\ 7330.9 \\ 7330.10 \\ 7330.11 \\ 7330.12 \\ 7330.13 \\ 7330.14 \\ 7330.15 \end{gathered}$	$\stackrel{\bullet}{\bullet}$			0 to 9999.99 number of desired machine parameter NOTE: the index must have 2 decimal places, i.e. 110.10 instead of 110.1	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
Allocation of the dialogs to the defined USER parameters	0 1 2 3 4 5 6 7 8 9	$\begin{aligned} & \hline 7340.0 \\ & 7340.1 \\ & 7340.2 \\ & 7340.3 \\ & 7340.4 \\ & 7340.5 \\ & 7340.6 \\ & 7340.7 \\ & 7340.8 \\ & 7340.9 \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\stackrel{\bullet}{*}$	$\begin{aligned} & 0 \text { to } 4095 \\ & 0=\text { first line of the corresponding file } \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$

Colours, General Display and FK Graphics

Function	$\begin{array}{ll} \text { MP } & \\ \text { No. } \quad \text { Bit } \\ \hline \end{array}$	A	B	C	Input	AE-6 Entry value
Window frame	7350	*	-	-	\$000 000 to \$3F3F3F	\$030200C
Error messages	7351	-	-	-		\$03F3F0F
Operating mode display "Machine" Background Text for operating mode Dialogue	$\begin{aligned} & 7352.0 \\ & 7352.1 \\ & 7352.2 \end{aligned}$	$\stackrel{\rightharpoonup}{*}$	-	$\stackrel{\rightharpoonup}{*}$		$\begin{aligned} & \$ 0000000 \\ & \$ 0342008 \\ & \$ 03 F 3828 \end{aligned}$
Operating mode display "Programming" Background Text for operating mode Dialogue	$\begin{aligned} & 7353.0 \\ & 7353.1 \\ & 7353.2 \end{aligned}$	$\stackrel{\rightharpoonup}{*}$	-	$\stackrel{+}{*}$		$\begin{aligned} & \$ 0000000 \\ & \$ 0342008 \\ & \$ 03 F 3828 \end{aligned}$

| Function | MP
 No. | Bit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | A

| Function | MP
 No. | Bit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | A

Machining and Program Run

Function	MP No. Bit	A	B	C	Input	AE-6 Entry value
"Scaling factor" cycle in two or three axes	7410*	*	*	*	$\begin{array}{ll} 0= & 3 \text { axes } \\ 1= & \text { only in the machining plane } \end{array}$	0
Tool data in TOUCH PROBE cycle	7411*	*	*	-	$\begin{array}{ll} 0= & \text { the current tool data are overwritten with the } \\ & \text { calibrated data of the touch probe } \\ 1= & \text { the calibrated tool data are retained } \end{array}$	0
Cycles for milling pockets with free-programmed contour	7420*				0 to 31	\%00000
- Slot milling direction	0	-	-		$\left.\begin{array}{ll} 0= & \text { anti-clockwise slot milling of the pocket contours, } \\ \text { clockwise for islands } \end{array}\right\} \begin{aligned} & \text { clockwise slot milling of the pocket contours, } \\ & \text { anti-clockwise for islands } \end{aligned}$	
- Sequence for clearing out and slot milling	1	*	-		$\begin{array}{\|ll} \hline 0= & \text { first slot milling, then clear out pocket } \\ 2= & \text { first clear out pocket, then slot milling } \\ \hline \end{array}$	
- Merge programmed contours	2	-	-		$\left.0=\begin{array}{ll}\text { contours merged only if the tool center paths } \\ \text { intersect }\end{array}\right]$contours merged if the programmed contours overlap	
- Clear out and slot milling to pocket depth for each peck	3	-	*		$0=$clearing out and slot milling performed in one $8=$ operation for all pecks for each peck, first perform slot milling and then feed clearing out (depending on bit 1) before next peck	
- Position after finishing a contour pocket (cycles 6, 15, 16, 21, 22, 23, 24)	4	-	05		$\begin{array}{ll} 0= & \text { the control moves to the position at which it was } \\ \text { before the cycle call } \\ 16= & \text { only the tool axis is lifted to clearance height } \\ \text { after the cycle } \end{array}$	

[^25]

[^26]| Function | MP
 No. Bit | A | B | C | Input | AE-6
 Entry value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Constant feed rate in corners | $\begin{gathered} 74 \\ 60 \\ * \end{gathered}$ | * | - | - | 0 to 179.9999 [$\left.{ }^{\circ}\right]$ | 10 |
| Display mode and software limit switches for rotary axis | $\begin{gathered} 74 \\ 70 \\ * \end{gathered}$ | 108 | - | - | $\begin{aligned} 0= & 0 \text { to } \pm 359.999^{\circ} \text { (software limit switches are } \\ & \text { not monitored) } \\ 1= & 0 \text { to } \pm 99999.9999\left[{ }^{\circ}\right] \end{aligned}$ | 0 |
| Datum in datum table | 7475 | - | - | - | $\begin{array}{ll} 0= & \text { datum point is workpiece datum } \\ 1= & \text { datum point is machine datum } \end{array}$ | 0 |
| Output of tool number or pocket number
 with TOOL CALL block | 7480.0 | - | - | - | 0 to 6
 $0=$ no output
 $1=$ output of tool number only when tool number
 changes (W262)
 $2=$ output of tool number with every TOOL CALL
 (W262)
 $3=$ output of pocket number (W262) and tool
 number (W264) only when tool number changes
 $4=$ output of pocket number (W262) and tool
 number (W264) with every TOOL CALL
 $5=$output of pocket number (W262) and tool
 number (W264) only when tool number changes;
 pocket table does not change.
 output of pocket number (W264) with every
 TOOL CALL; pocket table does not change. | 2 |

Function	$\begin{array}{ll} \text { MP } & \\ \text { No. } & \text { Bit } \\ \hline \end{array}$	A	B	C	Input	AE-6 Entry value
with TOOL-DEF blocks (only if MP7260 > 0)	7480.1	-	-	-	$0=$ no output $1=$ output of tool number only when tool number $2=$ changes (W262) $3=$ output of tool number with every TOOL DEF (W262) output of pocket number (W262) and tool number (W264) only when tool number changes $4=$ output of pocket number (W262) and tool number (W264) with every TOOL DEF	2
Number of traverse ranges	7490	-	*	-	$0=$ 1 range, 3 datums $1=$ 3 ranges, 3 datums $2=$ 1 range, 1 datum $3=$ 3 ranges, 1 datum	0

* accessible via code number 123

Tilting the Working Plane

Function	$\begin{array}{ll} \text { MP } & \\ \text { No. } & \text { Bit } \end{array}$	A	B	C	Input	AE-6 Entry value
3. Parameter block	$\begin{aligned} & 7530 \\ & 7531 \\ & 7532 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 08 \\ & 08 \\ & 08 \\ & \hline \end{aligned}$	-		0 to 63 0 to 3 -99999.9999 to +99999.9999 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$
4. Parameter block	$\begin{aligned} & 7540 \\ & 7541 \\ & 7542 \\ & \hline \end{aligned}$	$\begin{aligned} & 08 \\ & 08 \\ & 08 \\ & \hline \end{aligned}$	-		0 to 63 0 to 3 -99999.9999 to +99999.9999	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$
5. Parameter block	$\begin{aligned} & 7550 \\ & 7551 \\ & 7552 \end{aligned}$	$\begin{aligned} & \hline 08 \\ & 08 \\ & 08 \end{aligned}$	-		0 to 63 0 to 3 -99999.9999 to +99999.9999	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$
6. Parameter block	$\begin{aligned} & 7560 \\ & 7561 \\ & 7562 \end{aligned}$	$\begin{aligned} & \hline 08 \\ & 08 \\ & 08 \end{aligned}$	$\stackrel{+}{*}$		0 to 63 0 to 3 -99999.9999 to +99999.9999	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$
7. Parameter block	$\begin{aligned} & 7570 \\ & 7571 \\ & 7572 \end{aligned}$	$\begin{aligned} & \hline 08 \\ & 08 \\ & 08 \end{aligned}$	*		0 to 63 0 to 3 -99999.9999 to +99999.9999	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$
8. Parameter block	$\begin{aligned} & 7580 \\ & 7581 \\ & 7582 \end{aligned}$	$\begin{aligned} & 08 \\ & 08 \\ & 08 \end{aligned}$	$\stackrel{+}{*}$		0 to 63 0 to 3 -99999.9999 to +99999.9999	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$
9. Parameter block	$\begin{aligned} & 7590 \\ & 7591 \\ & 7592 \end{aligned}$	$\begin{aligned} & 08 \\ & 08 \\ & 08 \\ & \hline \end{aligned}$	*		0 to 63 0 to 3 -99999.9999 to +99999.9999	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$

Hardware

Function	$\begin{array}{ll} \text { MP } & \\ \text { No. } \quad \text { Bit } \end{array}$	A	B	C	Input	AE-6 Entry value
Handwheel configuration	7640*	-	-	-	$0=$ no handwheel connected $1=$ HR 330 (all keys evaluated by NC) ${ }^{11}$ $2=$ HR 130, HR 330 (all keys evaluated by NC) ${ }^{21}$ $3=$ HR 330	0
Entry of interpolation factor	7641	-	-	-	$\begin{array}{ll} 0= & \text { entry via keyboard } \\ 1= & \text { entry via PLC module } 9036 \end{array}$	0

* accessible via code number 123
${ }^{11}$ axis can only be switched by handwheel
${ }^{2)}$ axis can be switched by handwheel and keyboard
${ }^{3)}$ If the handwheel HR 410 does not receive any initializing parameters
(MP 7645. X), it automatically switches to HR 332 mode (MP $7640=4$).

Function	MP No.	Bit	A	B	C	Input	AE-6 Entry value
Assignment of 3. handwheel via machine parameter (MP 7640=5)	7645.1		-	-		$\begin{aligned} & \hline 0= \text { simulation of } 1 . \text { position of } \\ & \text { axis selector switch } \\ & M P 7645.0=0 \rightarrow Z \text { axis } \\ & M P 7645.0=1 \rightarrow X \text { axis } \\ &+1= X \text { axis } \\ &+2= Y \text { axis } \\ &+4= Z \text { axis } \\ &+ 8= \\ &+ I V . \text { axis } \\ &+=\mathrm{V} . \text { axis } \\ & \hline \end{aligned}$	0
Axis selection procedure (MP $7640=5$)	7645.2		-	-		$\begin{array}{ll} \hline 0= & \text { selection via axis selector switch } \\ & \text { according to MP } 7645.0 \\ 1= & \text { axis selection according to MP } 7645.1 \end{array}$	
reserved	$\begin{gathered} 7645.3 \\ \text { to } \\ 7645.7 \end{gathered}$		-	-		no function	0
Count direction for handwheel	7650		-	-		$\begin{array}{ll} 0= & \text { positive count direction } \\ 1= & \text { negative count direction } \\ \hline \end{array}$	0
Hysteresis for electronic handwheel	7660		-	-		0 to 65535 [increments]	10
Minimum interpolation factor for handwheel	7670		-	104		0 to 10	0
Handwheel interpolation factor slow (HR 130/3xx/410) medium (HR 410) fast (HR 410)	$\begin{aligned} & 7670.0 \\ & 7670.1 \\ & 7670.2 \end{aligned}$		-	$\begin{aligned} & 04 \\ & 04 \\ & 04 \\ & \hline \end{aligned}$		0 to 10	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$
HR 410: handwheel \% factor slow (HR 410) medium (HR 410) fast (HR 410)	$\begin{aligned} & 7671.0 \\ & 7671.1 \\ & 7671.2 \end{aligned}$		-	$\begin{aligned} & 04 \\ & 04 \\ & 04 \end{aligned}$		0 to 100 [\%]	$\begin{gathered} 50 \\ 75 \\ 100 \end{gathered}$

Function	$\begin{aligned} & \text { MP } \\ & \text { No. } \\ & \hline \end{aligned}$	Bit	A	B	C	Input		AE-6 Entry value
Parameter with multiple function - Memory function for axis direction keys - Re-approaching the contour - Block scan - Interruption of block scan by "STOP" or by M06 - Include dwell time during block scan to change the direction of rotation in a "tapping" cycle - Start calculation with block scan - Tool length for blocks with surface normal vector - Bit reserved	7680		-	$\stackrel{*}{*}$		$\begin{aligned} & 0= \\ & +1= \\ & 0= \\ & +2= \\ & 0= \\ & +4= \\ & 0= \\ & +8= \\ & 0= \\ & +16= \\ & 0= \\ & 0= \\ & +32= \\ & 0= \\ & +64= \end{aligned}$	not stored stored inactive active inactive active interruption no interruption dwell time is waited to end dwell time is not waited to end start from cursor position start from beginning of program without DR2 from the tool table with DR2 from the tool table	\%00011111

Function	MP No.	Bit	A	B	C	Input	AE-6 Entry value
Incremental positioning after TOOL CALL	7682		-	-	06	$0=$ tool length difference taken into account 1 = tool length difference ignored	0
Memory test at power-on	7690					0 to 7	\%111
RAM		0	-	-	-	$\begin{aligned} & +0=\text { test } \\ & +1=\text { no test } \end{aligned}$	
EPROM		1	-	-	-	$\begin{aligned} & +0=\text { test } \\ & +2=\text { no test } \end{aligned}$	
Harddisk		2	-	-	-	$\begin{aligned} & +0=\text { test } \\ & +4=\text { no test } \end{aligned}$	

[^0]: ${ }^{1)}$ outputs cannot be switched off via ext. EMERG. STOP

[^1]: ${ }^{1)}$ With active analogue inputs (depend on the position of the ENABLE ANALOGUE INPUTS switch on PL140) these PLC inputs and outputs are not available (see section 21.7.2).

[^2]: 1) not with version 11 of PL 410
[^3]: 1) $=$ TE versions 01/03
 2) $=$ TE versions 02/04
 3) $=$ TE Id.Nos. 264105 05/06
[^4]: 1) X6 can be used for a machine axis, if no oriented spindle stop is required.
[^5]: ${ }^{1)}$ These error messages indicate that the disk is defective; in most cases, they can only be eliminated by formatting the disk anew.
 2) If this error message comes up while the disk is inserted, the drive is probably defective.
 3) Hardware defect

[^6]: (a4) With this wiring, only transfer stop with DC3 is possible (software handshake).

[^7]: The RS-422 data interface has identical pin layouts at the logic unit X22 and at the RS-422 adapter block.

[^8]: 1) The file TOOL.T (active tool table) must be read out in another operating mode (see section 17.3.2)
 2) see section 17.2
[^9]: 603
 If no .CMA file is defined and multipoint axis error compensation selected via MP730, the compensation value tables of the code number 105296 are valid.

[^10]: 1) see section 17.1
[^11]: The TOOL.T file (active tool table) must be downloaded in another operating mode (see section 17.4.2).

[^12]: ${ }^{11}$ Caution: Until the software version 12 the dimensions " MM " must be contained after the file name in the header of a <NAME>.COM file; otherwise the file cannot be read in (if required, use a text editor to insert MM)

 Example of a header: BEGIN X-AXIS.COM MM DATUM:+90 DIST:2

[^13]: The offset adjustment with code number only compensates the current offset. Subsequent offset modifications are not compensated.

[^14]: ${ }^{1)} \mathrm{X} 6$ may only be used for a machine axis, if no regulated spindle (GS) is required.
 ${ }^{2)}$ The input assignment for the speed encoders ($\mathrm{X} 15-\mathrm{X} 20$) is fixed: $\mathrm{X} 15=\mathrm{X}$ axis, $\mathrm{X} 16=\mathrm{Y}$ axis etc.

[^15]: ${ }^{1)}$ S-analogue may only be used for a machine axis, if no analogue output of the spindle speed is required.

[^16]: ${ }^{11}$ analogue controlled

[^17]: 1) analogue controlled
 ${ }^{2)}$ no function with TNC $425($ MP $1900 \neq 0)$ and TNC 426 PA $(M P 2000 \neq 0)$: entry value $=0$
[^18]: ${ }^{1)}$ entry values depending on the power stage: see table 1 on page 21.1

[^19]: ${ }^{1)}$ entry values depending on the motor: see table 2 on page 21.1

[^20]: ${ }^{11}$ entry values depending on the motor: see table 2 on page 21.1

[^21]: 'entry values depending on the motor: see table 2 on page 21.1

[^22]: 1) reserved, entry value 0
[^23]: * accessible via code number 123

[^24]: * accessible via code number 123

[^25]: * accessible via code number 123

[^26]: * accessible via code number 123

