Service Manual TNC 4074415

* SERVICE MANUAL * TNC 407 / 415

Changes/Developments

We are constantly working on technical improvements of our products.
For this reason, details described in this manual may differ slightly from your control. In this case, please order a revised service manual from us.

Duplication

This manual is provided subject to the condition that no part of it shall be duplicated in any form without our prior consent.

Issue 10/00
valid for the software versions TNC 407 = 24307 ., version 07
TNC $415=24305$., 25991 ., version 10
TNC 407 = 24302 ., version 01
TNC 415 = 25996 ., 25997 ., version 01)

Contents Service Manual TNC 407/415

How to use this Service Manual
Minor Error Messages1
Major Error Messages and their Causes
Logic Unit LE 417/415
Connector Designation and Pin Layout
Board description
Grounding diagram
Power Supply8
Keyboard Unit TE 400/410
Visual Display Unit BC 110/110B9
10
Encoders
11
Handwheel HR 130/330
12
3D-Touch Probe Systems13
Data Interfaces14
External Data Transfer151617
Table of Contents Page

1. How to use this service manual 3
2. Minor error messages 4..
2:1 Causes of minor error messages 5
3. Major error messages and their causes 6
4. Logic unit LE 407/415 11
4.1 Designation of the logic unit LE 407 11
4.2 Designation of the logic unit LE 415 12
4.3 Hardware components of the logic unit. 13
5. Connector designation and pin layout 14
5.1 Connectors on the logic units 14
5.2 Connectors on the PLC boards 21
5.3 Connectors on the keyboard units 24
5.4 Connectors on the visual display units 27
6. Board description. 29
7. Grounding diagram 30
8. Power supply 32
8.1 External power supply requirements 32
8.2 Power supply of the visual display units 34
8.3 Power supply of the NC-Part. 35
8.4 Checking the power supply 36
8.5 Measuring points on the boards 38
8.6 Power supply of the PLC-Part 40
8.7 Buffer battery 42
9. Keyboard unit TE 400/410 43
9.1 Overview 43
9.2 Checking the keyboard unit. 44
10. Visual display unit BC 1 10/110B 48
10.1 Overview 48
10.2 Checking the visual display unit 48
11. Encoders 49
11.1 Error messages 49
11.2 Error causes. 49
11.3 Checking the encoders 49
12. Handwheel HR 130/330 51
12.1 Overview 51
12.2 Checking the handwheel HR $130 / 330$ 51
12.3 Error messages 51
13. 3D touch probe system 52
13.1 Overview 52
13.2 Error messages 53
14. Data interfaces 54
14.1 Operating modes 54
14.2 Interface configuration and allocation of the operating modes 55
14.3 Connecting cables and adaptors for the RS 232C data interface 56
14.4 Machine parameters for the data interfaces 56
14.5 Error messages 59
15. External data transfer 63
15.1 Data transfer menu 63
15.2 Overview of all files in the RAM. 65
15.3 External data output 65
15.4 Downloading external data 70
16. Analog outputs 74
16.1 Specifications 74
16.2 Checking the analog outputs 74
16.3 Switching over the position display 76
16.4 Feed adjustment. 76
16.5 Offset adjustment 77
17. PLC inputs and outputs 79
17.1 Specifications 79
17.2 Checking the PLC inputs and outputs 80
17.3 Further diagnosis possibilities in the PLC mode 82.1
17.4 Output "Control Ready for Operation" and
Acknowledgement for test "Control Ready for Operation" 83
18. Test units 86
18.1 Test load unit for the power supply assembly 86
18.2 Test units for PLC inputs and outputs 86
18.3 Measuring adaptor 87
18.4 Encoder diagnostic set 88.1
19. Exchange instructions 89
19.1 General remarks. 89
19.2 Exchanging the logic unit. 93
19.3 Exchanging the TNC 415 processor board 95
19.4 Exchanging the TNC 415 CLP board 97
19.5 Exchanging the PLC board and the graphics board of TNC 407/415. 99
19.6 Exchanging the TNC 407 processor board 101
19.7 Exchanging the power supply assembly of TNC 407/415 103
19.8 Exchanging the PLC I/O board PL 400 105
19.9 Exchanging the EPROMs. 107
20. Machine parameters 108

1. How to use this Service Manual

The service manual TNC 407/415 can be used to diagnose, locate and eliminate errors on machine tools controlled by TNC.

In order to correctly judge the problems in an NC-controlled machine tool, fundamental knowledge of the machine tool and its drives, as well as their interaction with the control and the measuring systems is required. Incorrect behaviour of the machine tool can also result from improper use of the control, NCprogramming errors and incorrect or not properly optimized machine parameter.

For further information in this respect please refer to the

.Documentation of the Machine Tool Manufacturer
.Operating Manual (HEIDENHAIN)
.Technical Manual (HEIDENHAIN).

The manual for the machine tool manufacturer is not enclosed with every control as is the operating manual. In general, it is only supplied to the machine tool manufacturer and is updated by HEIDENHAIN, Traunreut. Therefore, it is absolutely necessary to contact the machine tool manufacturer, if errors occur that are due to a machine parameter or to the interface of the control. Support will, however, also be provided by the service department of HEIDENHAIN, Traunreut. and HEIDENHAIN agencies. Telephone numbers, addresses and telex/fax numbers can be found on the back side of the cover page and on the back side of this service manual.

2. Minor Error Messages

The TNC $407 / 415$ features a comprehensive integrated monitoring system to avoid input or operation errors, to locate errors and technical defects of the entire equipment (TNC, measuring system, machine tool, cables etc.). The monitoring system is a fixed component of the TNC hardware and software; it is always active when the control is switched on. If a technical defect or an operation error is detected, an error message in plain language is displaved on the screen.

CE

To erase minor error messages, press
Further error messages are described in the
-Operating Manual TNC 407/415
-Technical Manual
Documentation by the machine tool manufacturer
Operating Instructions FE 401 B.

ERROR MESSAGE	Section
AXIS DOUBLE PROGRAMMED	13.2
START POSITION INCORRECT	13.2
TOUCH POINT INACCESSIBLE	13.2
RANGE EXCEEDED	13.2
BAUD RATE NOT POSSIBLE	14.5
OPERATION PARAMETERS ERASED	2.1
CYCL-PARAMETER INCORRECT	13.2
FAULTY RANGE DATA	13.2
DATA MEDIUM MISSING	14.5
DATA MEDIUMEIVIF Y	14.5
DATA MEDIUM WRITE-PROTECTED	14.5
ROTATION NOT PERMITTED	13.2
PLANE WRONGLY DEFINED	13.2
LIMIT SWITCH <AXIS>	2.1
ERR: 001	14.5
ERR: 002	14.5
FRR: 003	14.5
ERR: 004	14.5
ERR: 010	14.5
ERR: 012	14.5
ERR: 013	14.5
ERR: 014	14.5
ERR: 100	14.5
FRR: 100	14.5
ERR: 103	14.5

ERROR MESSAGE	Section
ERR: 104	14.5
ERR: 105	14.5
ERR: 106	14.5
ERR: 107	14.5
ERR: 108	14.5
EMERGENCY STOP	17.3
EXT. IN-/OUTPUT NOT READY	14.5
WRONG OPERATING MODE	14.5
WRONG PROGRAM DATA	14.5
SCALING FACTOR NOT PERMITTED	13.2
ME: TAPE END	14.5
HANDWHE:EL DEFECTIVE	12.3
HANDWHEEL ?	12.3
PLC PROGRAM NOT TRANSLATED	2.1
POSITIONING ERROR	2.1
PROGRAM INCOMPLETE	14.5
EXCHANGE BUFFERBATTERY	8.7
INTERFACE ALREADY ASSIGNED	14.5
MIRRORING NOT PERMITTED	13.2
RELAY EXT. DC VOLTAGE MISSING	17.3
POWER INTERRUPTED	2.1
EXCHANGE TOUCH PROBE BATTERY	13.2
STYLUS ALREADY IN CONTACT	13.2
PROBE SYSTEM NOT READY	13.2
TIME LIMIT EXCEEDED	13.2

2.1. Causes of Minor Error Messages

OPERATING PARAMETERS ERASED

With new and exchange controls, the machine parameters are always erased.
Software exchanged with different software versions.
Defective buffer batteries accumulator or capacitor
RAM error on the processor board
\square
LIMIT SWITCH X+
"Manual" operating mode:
The preset software limit switch has been reached during traverse with the directional keys.

- "Automatic" operating mode:

The calculated position of the current block is beyond the software limit switch range or beyond the additional limit (set with MOD function >AXIS-LIMIT<). The positioning is not performed.

Machine Parameters for the Software Limit Switches

	$\mathbf{x +}$	$\mathbf{X}-$	\mathbf{Y}	$\mathbf{Y -}$	$\mathbf{z +}$	$\mathbf{Z}-$
Default setting	910.0	920.0	910.1	920.1	910.2	920.2
Activation via PLC	911.0	921.0	911.1	921.1	911.2	921.2
Activation via PLC	912.0	922.0	912.1	922.1	912.2	922.2

	$\mathrm{I} \mathrm{V}_{+}$	$\mathrm{I} \mathrm{V}_{-}$	$\mathrm{V}+$	V -
Default setting	910.3	920.3	910.4	920.4
Activation via PLC	911.3	921.3	911.4	921.4
Activation via PLC	912.3	922.3	912.4	922.4

POWER INTERRUPTED

After a reset signal of the power supply (e.g. line voltage drops)
Important machine parameters may have been changed;
e.g. MP210, MP410.3, MP730, MP3240.1. MP7210. MP7310

POSITIONING ERROR

- The servo lag monitor set in the machine parameters MP1410 or MP1710 has responded.
(Check the run-in behaviour of the axis; readjust, if necessary)

PLC PROGRAM NOT TRANSLATED

[^0]| PLC：ERROR 00 | Marker | 2924 |
| :--- | :--- | :--- |
| to | to | |
| PLC：ERROR 99 | Marker | 3023 |

Instead of＂PLC：ERROR 00 to 99 ＂another dialog may be displayed with customized PLC programs For further information，please contact your machine tool manufacturer．

3. Major Error Messages and their Causes

The integrated monitoring system distinguishes between minor and gross errors. Gross errors are characterized by a blinking display (e.g. malfunctions of the encoders, of the drives and data processing errors).
In the case of gross errors, the control opens the contact Control Ready for Operation . This causes an emergency stop of the machine tool.

END
By switching off the main switch or by pressing
, the "emergency stop" state can be reset, provided that the error cause has been eliminated.

Display (blinking)
 PROCESSOR CHECK ERROR $X Y$

irror Cause

$\mathbf{I}=0$ CRC sum control data incorrect
1 CRC sum machine parameter incorrect
2 Check sum NC memory incorrect
3 Test plane incomplete / will not run
4 Crosstalk between data bits in the RAM
5 Crosstalk between addresses in the RAM
6 Stack overflow
7 CRC sum PLC program ASCII
8 CRC sum PLC program OP-code
9 CRC sum test-section
A Software error
B Wrong interrupt (differentiation with register VO)
C Time slice overflow
D Command stack overflow control loop
E Wrong command main processor
F Wrong display mode main processor
G Wrong boot command
H Verify error with boot command "Load"
I Wrong supplementary command with boot command "Test"
J Boot logon successful
K EPROM-comparison CLP
L Wrong command CLP processor
M Operating voltage beyond tolerance range
N No PLC texts in PLC chip
0 Axis 4 and/or 5 paraxial with export version
P Inhibited software function activated (function
Q TNC 415 without CLP or geometry CPU
R PLC activates at least 2 commands from the Q-parameters (M2713) and zero shift (M2716).
${ }^{\prime}=$ CPU number $1=$ main processor
2 = geometry processor
3 = CLP processor

If the error message "PROCESSOR CHECK ERROR $X Y^{\prime \prime}(X Y$ = code; see above) comes up repeatedly, send the complete logic unit to HEIDENHAIN for repair. Please indicate the error message and the code.
Display (blinking)
ERROR IN PLCPROGRAM XX

Error Cause
$X X=1 A \quad$ NC start
complement missing
1B Rapid traverse
1C Directional key latch
ID Feed enable
$1 E$ PLC positioning $\quad X^{11}$
IF -" - $\quad Y^{11}$
$1 \mathrm{G} \quad \mathrm{Z}^{11}$
1 H " - 4^{11}
II Directional key $\mathrm{x}+$
1J X-
$1 \mathrm{~K}-{ }^{-"-} \quad Y_{+}$
IL " - Y-
1M " - Z+
IN -" - Z-
10 " - 4+
$1 P$ 4-
IQ More than one of the markers M2485 to M2487 (M03, M04. M05) are set simultaneously

2A Jog increment pos. $\quad X+$
2B " - X
$2 C \quad Y+$
2D Y-
2E - " \quad Z+
2 F -" Z
2G - " - 4+
2 H .
$5+\quad$ ""~
$\begin{array}{ccc}2 K & \text { " } & 5+ \\ 2 K & 5-\end{array}$
2L

2 M	Directional key
2 N	$5+$
-	

2 P PLC positioning 5
50 Excessive nesting (too many modules nested inside one another)
51 STACK underflow (an attempt to acquire data from the STACK, although it was empty)
52 STACK overflow (an attempt to load too much data onto the STACK)
53 Time-out (the permissible program run-time has been exceeded by more than twice. Check the subprogram structure.)
54 CASE-arguments are larger than the number of entries in the table.
55 No access to error texts / dialog texts.

1) Only active with compatibility mode TNC 355

Notes:

Error Cause

$x=7$ Called label has not been defined
8 No end-program condition found (the program does not contain an EM instruction, or it contains a JP instruction without a following LBL instruction)
9 Program is too long (RAM-overflow) (insufficient memory for the program code which is to be generated)
$x x=10$
Assign with parenthesis (an =, S, SN, R, RN, or PSinstruction has been programmed, although arithmetic
11 parentheses are open)
Excessive nesting of parentheses (more than 16
12 parentheses are open) Jump within a gating sequence (unconditional jump has been programmed, although the gating sequence was
13 not closed with an Assign.)
"Close Parentheses" without "Open Parentheses" la "Close Parentheses" command was programmed,
14 although no parentheses were open) Label within parentheses (a LBL instruction has been
15 programmed, although parentheses are open) Label within a gating sequence (a LBL instruction has been programmed, although the previous gating was
16 not closed with an Assign.)
Jump within parentheses (a jump instruction has been
17 programmed, although parentheses are open)
Parentheses open at end of block (an EM instruction has been programmed, although parentheses are open)
18 Label defined twice
19 Word Assign missing (a Logic instruction has been programmed, although the previous Word-gating was not closed with an Assign)
20 Logic Assign missing (a Word instruction has been programmed, although the previous Logic-gating was not closed with an Assign)
21 Word accumulator not loaded (a Word Assign or gating has been programmed, although the Word accumulator does not contain a definite value)
22 Logic accumulator not loaded (a Logic Assign has been programmed, although the Logic accumulator does not contain a definite value)

Display (blinking)	Error	Cause
ERROR IN PLC-PROGRAM X		Accumulators not loaded on "open parentheses" (an Al, ANL, Ol, ON[or XON[command has been programmed, although neither the word nor the logic accumulator has been gated or loaded.)
(continued)		
		Incorrect type of the parentheses result (a different type has been calculated in the parentheses from that which was defined in the "open parentheses" command, i.e. logic instead of word or vice versa.)
		Conditional jump with incorrect logic accumulator (a conditional jump has been programmed, although the logic accumulator does not contain a definite value.)
		Empty CASE-instruction
		"END-CASE" missing

Notes:

Display (blinking)	Error Cause
$\begin{aligned} & \text { GROSS POSITIONING ERROR } \\ & \text { <AXIS , YA } \end{aligned}$	Position (Servo Lag) Monitoring Operation with feed precontrol: position monitoring range exceeded (range determined in MP 1420.x) Operation with servo lag: servo lag monitoring range exceeded (determined in MP 1720.x)
GROSS POSITIONING ERROR SAXIS $>$ YB	Monitoring of the Analog Voltage Limit The nominal voltage calculated by the control has reached its limit of $\pm 10 \mathrm{~V}$ (only with feed precontrol).
GROSS POSITIONING ERROR KAXIS $>$ YC	Movement Monitoring The voltage difference calculated by the control has reached the limit programmed in the machine parameter MP 1140.x.
GROSS POSITIONING ERROR: <AXIS> YD	Standstill Monitoring The deviation from the nominal position of an axis in standstill has exceeded the value programmed in the machine parameter MP 1110.x.
\qquad	Monitoring of the Offset Voltage The offset voltage limit of 100 mV has been reached during an automatic offset adjustment with MP 1220. (see section 16.5) $\begin{array}{ll} \mathbf{Y}=\text { CPU number } \quad 1=\text { main processor } \\ & 2=\text { geometry processor } \\ & 3=\text { CLP processor } \end{array}$

Error Location

When the error message "GROSS POSITIONING ERROR" is displayed, the error may be located in any element of the closed loop.

$$
\begin{aligned}
& \text { e.g. } \\
& \text { Exror in control (e.g. CLP board) } \\
& \text { Excessive offset voltage at the servo amplifier } \\
& \text { Incorrect speed adjustment at the servo amplifier } \\
& \text { Monitoring function of servo amplifier has responded } \\
& \text { (e.g. monitoring of current intensity) } \\
& \text { - Electrical defect at the servo amplifier } \\
& \text { Mechanical error (bearing, spindle, guides) } \\
& \text { Excessive mechanical forces on a drive }
\end{aligned}
$$

${ }^{11}$ Instead of "PLC: ERROR 00 to 99 " another dialog may be displayed with customized PLC programs. For further information, please contact your machine tool manufacturer.
Display (blinking)
CHECK SUM ERBOR YX

:rror Cause

-NC 407:
IA CRC-sum main processor EPROM CHIP $1 / 2$
1B CRC-sum main processor EPROM CHIP 3/4
ID CRC-sum PLC chip
IX Check sum calculation
-NC 415A:
YA CRC-sum main processor EPROM CHIP $1 / 2$
YC CRC-sum main processor EPROM CHIP 3/4
YD CRC-sum PLC chip
YE \quad CRC-sum Gem chip CHIP 7
YR CRC-sum CLP boot chip
IX Check sum calculation
'NC 415B, TNC 425:
YA CRC-sum main processor EPROM CHIP 1/2
YB CRC-sum main processor EPROM CHIP 3/4
YC CRC-sum geometry processor EPROM CHIP 5/6
YD CRC-sum PLC chip
YE \quad CRC-sum Gem chip CHIP 7
YR CRC-sum CLP boot chip
IX Check sum calculation
$\mathrm{Y}=\mathrm{CPU}$ number
1 = main processor
2 = geometry processor
$3=$ CLP processor

CRC = Cyclic Redundancy Check
If the error message "CHECK SUM ERROR YX" comes up repeatedly, send the complete LOGIC UNIT to HEIDENHAIN for repair. Please indicate the check sum error.

4. Logic Unit LE 407 / 415

4.1 Designation of the Logic Unit LE 407

Logic Unit LE 407 without
PLC I/O board (PL 400)

Old housing:
New housing:

Option:
PLC I/O board (PL 400)

4.2.Designation of the Logic Unit LE 415

Logic Unit LE 415 without
PLC I/O board (PL 400)

Old housing:

Option:
PLC I/O board (PL 400)

id. label and program label logic unit
New housing:

4．3 Hardware Components of the Logic Unit

The logic unit consists of the following components：
－Power supply
Processor board
PLC board
－PLC I／O board PL 400 （optional）
PLC analog board PA 110 （optional）
Following the components used in the different logic units are listed：

4．3．1 Components Overview TNC 407 ／ 415

Board Overview

LE 407 A	256113							
LE 407 A	255444							
LE 407 A	261092							
LE 407 A	264430							
LE 415／E	251481							
LE 415／E	258993 ．．							
LE 415／E	264429 ．．							
Processor Boards								
253251 ．．		X	X	X				
255924 ．．								X
256235.							X	
261073						X		
265219					X			

PLC Graphics Boards

PLC Graphics Boards
253373
:---
\mathbf{I}

CLP Boards

$253248 .$.		X	X
$265218 .$.	X		

Power Supply Boards

Power Supply Boards

23648408			X
23648409	X	X	
23648410	X	X	X

			X
X	X	X	
X	X	X	X

PL 400 （optional）

252855	X	X	X

X	X	X	X

PA 110 （optional）

262651	X	X	X

5. Connector Designation and Pin Layout

5.1 Connectors on the Logic Units

5.1.1 Connector Designation LE 407

| | Power
 Jupply | Processor
 Board |
| :--- | :--- | :--- | | PLC and |
| :--- |
| Graphics Board |

Processor Board

X1 = encoder 1 [~]
x2 = encoder $2[\sim]$
x3 = encoder $3[\sim]$
x4 $=$ encoder $4[\sim]$
x5 = encoder $5[\Omega]$
X6 $=$ encoder $6[\Omega]$
$\mathrm{X} 8=$ nominal value output 1, 2. 3. 4, 5. S
x12 = touch probe system
x21 = data interface RS 232C
x22 = data interface RS 422
X23 $=$ serial handwheel interface
$B=$ signal ground
PLC and Graphics Board
$\mathbf{x 4 1}=$ PL.C output
X42 = PLC input
$\mathrm{X} 43=$ visual display unit (BC 1 10)
X44 = 24V supply for PLC
X45 = TNC operating panel (TE)
$X 46=$ machine operating panel
X47 = PLC I/O board (PL) or PLC analog board (PA)

Power Supply
$\mathbf{X 3 1}=\mathbf{2 4 V}$ supply for LE

5.1.2 Connector Designation LE 415

5.1.3 Pin Layout: POWER SUPPLY TNC $407 / 415$

X31 Power Supply

terminal block

Assignment	Pin No.
+24 V	1
0 V	2

\square

5.1.4. Pin Layout: PROCESSOR BOARD TNC 407

X1, X2, X3, X4 Encoder Inputs 1, 2, 3, 4 Sinusoidal input
Flange socket with female insert (9-pin)

Signal Designation	Pin No.
$0^{\circ}+$	1
$0^{\circ}-$	2
$90^{\circ}+$	5
$90^{\circ}-$	6
$R P+$	7
$R P-$	8
$+5 \mathrm{~V}\left(U^{P}\right)$	3
$0 \mathrm{U}\left(\mathrm{U}_{\mathrm{N}}\right)$	4
internal shield	9
external shield $=$ housing	housing

X8 Nominal Value Outputs 1, 2, 3, 4, 5, S
Flange socket with female insert (15-pin)

Signal Designation	Pin No.
analog output 1	1
analog output 2	3
analog output 3	5
analog output 4	7
analog output 5	4
analog output S-axis	8
OV analog output 1	9
OV analog output 2	11
OV analog output 3	13
OV analog output 4	14
OV analog output 5	6
OV analog output S-axis	15
external shield $=$ housing	housing
do not assign	$2,10,12$

X5, X6 Encoder Inputs 5, 6
Square-wave input
Flange socket with female insert (12-pin)

Signal Designation	Pin No.
Ua1	5
$-\mathrm{Ua1}$	6
Ua 2	8
-Ua 2	1
UaO	3
-UaO	4
UaS	does not exist
-UaS	7
+5 V (sensor line)	
$+5 \mathrm{~V}\left(\mathrm{UP}^{*}\right)$	2
0 V (sensor line $)^{*}$	12
$0 \mathrm{~V}\left(\mathrm{U}_{\mathrm{N}}\right)$	11
shield $=$ housing	9 (via spring)

X12 Touch Probe System
Flange socket with female insert (7-pin)

Signal Designation	Pin No.
internal shield	1
ready for operation	3
start	4
+15 V	5
$+5 \mathrm{~V}\left(\mathrm{U}^{\mathrm{P}}\right)$	6
-battery warning	7
OV $\left(\mathrm{U}_{N}\right)$	8
trigger signal	9
- trigger signal	10
do not assign	2
do not assign	11 to 15

[^1]
X21 Data Interface RS 232C

Flange socket with female insert (25-pin)

Signal Designation	Pin No.
shield	1
-RXD	2
$-T x D$	3
CTS	4
RTS	5
DTR	6
GND	7
DSR	$\mathbf{2 0}$
external shield	housing
do not assian	8 to $\mathbf{1 9}$
	$\mathbf{2 1}$ to $\mathbf{2 5}$

X22 Data Interface RS 422

Flange socket with female insert (15-pin)

Signal Designation	Pin No.
shield	1
RxD	2
CTS	3
TxD	4
RTS	5
DSR	6
DTR	7
GND	8
$-R \times D$	9
- CTS	10
$-T \times D$	11
$-R T S$	12
$-D S R$	13
$-D T R$	14
do not assign	15

X23 Serial Handwheel Interface

Flange socket with female insert (9-pin, D-Sub)

Pin No.	Assignment H R 130/330	Assignment HR 332
$1, \mathbf{3 . 5}$	n.c.	n.c.
Δ	$+12 V$	$+12 \backslash$
	$\checkmark v$	$\cup v$
3	DTR	DTR
8	n.C.	n.c.
7	RXD	RXD
housing	external shield $=$ housing	external shield $=$ housing

5.1.5. Pin Layout: CLP BOARD TNC 415

XI, X2, X3, X4, X5 Encoder Inputs 1 to 5 X10 Ref. Pulse Inhibit *
see section 5.1.4 $\mathrm{XI}, \mathrm{X} 2, \mathrm{X} 3$, X4

X6 Encoder Input 6

see section 5.1.4 X 5 , X6

X8 Nominal Value Output 1, 2, 3,
4. 5. S
see section 5.1.4 X 8

XI2 Touch Probe System
see section 5.1.4 X12

Flange socket with female insert (15-pin)

Signal Designation	Pin No.
shield	1
ref. pulse inhibit X1	2
ref. pulse inhibit X2	3
ref. pulse inhibit X3	4
ref. pulse inhibit X4	5
ref. pulse inhibit X5	6
ref. pulse inhibit X6	7
OV (PLC)	9
do not assign	8

* no longer required

X23 Handwheel HR 130/330
see section 5.1.4 X23
$\mathbf{X 2 2}$ Data Interface RS 422
see section 5.1.4 X22

5.1.7 Pin Layout: PLC GRAPHICS BOARD TNC $407 / 415$

X41 PLC Output

Flange socket with temale insert (37-pin)

Pin No.	Assignment
1	00
2	01
3	02
4	03
5	04
6	05
7	06
8	07
9	08
10	09
11	010
12	011
13	012
14	013
15	014
16	015
17	016
18	017
19	018
20	019
21	020
22	021
23	022
24	023
25	$024{ }^{4!}$
26	$025{ }^{43}$
27	$026{ }^{41}$
28	$027{ }^{41}$
29	028 ${ }^{41}$
30	$029{ }^{41}$
31	$0304{ }^{4}$
32	do not assign
33	OV (PLC) ${ }^{17}$
34	control ready for operation
35, 36, 37	24 V can be switched off via EMERG.STOP (PLC) ${ }^{2 \text {) }}$
housing	external shield

X42 PLC Input

Flange socket with temale insert (37-pin)

Pin No.	Assignment
1	10
2	11
3	12
4	13: acknowledgement for test "Control Ready for Operation"
5	14
6	15
7	16
8	17
9	18
10	19
11	110
12	111
13	112
14	113
15	114
16	115
17	116
18	117
19	118
20	119
21	120
22	121
23	122
24	123
25	124
26	125
27	126
28	127
29	128
30	129
31	130
32	131
33, 34	do not assign
35, 36, 37	OV (PLC) $)^{21}$
housing	external shield

1) Internal test potential for tests
2) External power supply for the outputs that can be switched off. Connect preferably via connector $X 44$, pin 1.
3) External reference potential for the PLC supply. Connect preferably via X44, pin 3.
4) Cannot be switched off via EMERGENCY STOP.

X43 Visual Display Unit (BC 1 10)

Flange socket with female insert (15-pin)

Pin No.	Assignment
$1,8,11$	GND
2 to $6,12,13$	do not assign
7	R
9	VSYNC
10	HSYNC
14	G
15	B

X 44 Power Supply for the PLC
 Terminal block

Pin No.	Assignment
1	+24 V can be switched off via EMERG.STOP
2	+24 V cannot be switched off via EMERG.STOP
2	$n \mathrm{~V}$

X45 TNC Operating Panel (TE)
Flange socket with female insert (37-pin)

Pin No.	Assignment	
1	RLO	key matrix
2	RL1	
3	RL2	
4	RL3	
5	RL4	
6	RL5	
7	RL6	
8	RL7	
9	RL8	
10	RL9	
11	RL10	
12	RL11	
13	RL12	
14	RL13	
15	RL14	
16	RL15	
17	RL16	
18	RL17	
19	RL18	
20	SLO	
21	SL1	
22	SL2	
23	SL3	
24	SL4	
25	SL5	
26	SL6	
27	SL7	
28	RL19	
29	RL20	
30	do not assign	
31	RL21	
32	RL22	key matrix
33	RL23	
34	spindle override	
35	feed override (wiper)	
36	+5 V override pot	
37	OV override pot	
housing	external shield	

X46 Machine Operating Panel Flange socket with female insert (37-pin)

Pin No.	Assignment
1	1128
2	1129
3	1130
4	1131
5	1132
6	1133
7	1134
8	1135
9	1136
10	1137
11	1138
12	1139
13	1140
14	1141
15	1142
16	1143
17	1144
18	1145
19	1146
20	1147
21	1148
22	1149
23	1150
24	1151
25	1152
26	00
27	01
28	O 2
29	O3
30	O 4
31	05
32	O6
33	07
34	OV (PLC) ${ }^{19}$
35	OV (PLC) ${ }^{11}$
36	$+24 \mathrm{~V}(\mathrm{PLC})^{2!}$
37	$+24 \mathrm{~V}(\mathrm{PLC})^{2)}$

X47 PLC I/O Board (PL)
Flange socket with female insert (25-pin)

Pin No.	Assignment
$1,2,3$	OV
4	serial IN 2
$5,6,17,18$	do not assign
7	- RESET
8	- WRITE EXTERN
9	WRITE EXTERN
10	- A5
11	- A3
12	$-A 1$
13	shield
$14,15,16$	+12 V
19	serial IN 1
20	EMERG.STOP
21	- -serial out
22	serial out
23	- A4
24	$-A 2$
25	$-A 0$

1) PLC reference potential for the outputs 00 to 07
2) PLC supply voltage routed via fuse for the inputs II 28 to II 52.

5.2 Connectors on the PLC Boards

5.2.1 Connector Designation PLC I/O Board PL 400

5.2.2 Pin Layout of the 1 st and 2nd PLC I/O Board PL 400

X1
Pin No. Assignment 1st PL 400 2nd PL 400 1 O32 064 2 O33 065 3 034 066 4 $O 35$ 067 5 $O 36$ 068 6 037 069 7 038 070 8 039 071 9 040 072 10 O41 073 11 O42 O74 12 do not assign

X4

Pin No.	Assignment 1st PL 400	2nd PL 400
1	1126	1254
2	174	1202
3	173	1201
4	172	1200
5	171	1199
6	170	1198
7	169	1197
8	168	1196
9	167	1195
10	166	1194
11	165	1193
12	164	1192

Pin No.	Assignment 1st PL 400	2nd PL 400
1	O43	075
2	044	076
3	O45	077
4	046	078
5	047	079
6	048	080
7	049	081
8	O50	082
9	051	083
10	O52	084
11	053	085
12	do not	assign

X5

Pin No.	Assignment 1st PL 400	2nd PL 400
1	186	1214
2	185	1213
3	184	1212
4	183	1211
5	182	1210
6	181	1209
7	180	1208
8	179	1207
9	178	1206
10	177	1205
11	176	1204
12	175	1203

x 3
X6

Pin No.	Assignment 1st PL 400	2nd PL 400
1	198	1226
2	197	I 225
3	196	1224
4	195	1223
5	194	1222
6	193	1221
7	192	1220
8	191	I 219
9	190	I 218
10	189	1217
11	188	I 216
12	187	1215

Pin No.	Assignment 1st PL 400	2nd PL 400
1	O54	086
2	O55	087
3	056	088
4	057	089
5	O58	090
6	O59	091
7	O60	092
8	O61	O93
9	O62	O94
10	Control Ready for Operation	
11	do not assign 12+24V cannot be switched off via EMERG.STOP*	

[^2]X7

Pin No.	Assignment 1st PL 400	2nd PL $\mathbf{4 0 0}$
1	1110	1238
2	1109	1237
3	1108	1236
4	1107	1235
5	1106	1234
6	1105	1233
7	1104	1232
8	1103	1231
9	1102	1230
10	1101	1229
11	1100	1228
12	199	1227

X8
Pin No. Assignment 1st PL 400 2nd PL 400 1 1122 1250 2 1121 1249 3 1120 1248 4 1119 1247 5 1118 1246 6 1117 1245 7 1116 1244 8 1115 1243 9 1114 1242 10 1113 1241 11 1112 1240 12 1111 1239

X9

Pin No.	Assignment 1st PL 400	
2nd PL 400		
1	do not assign	
2	do not assign	
3	do not assign	
4	1125	1253
5	1124	1252
6	1123	1251

X10 Connection to LE or to 1st PL
Pin No. Assignment $1,2,3$ OV 4 serial IN 2 $5,6,17,18$ do not assign 7 -RESET 8 - WRITE EXTERN 9 WRITE EXTERN 10 -A5 11 - A3 12 -A1 13 shield 14,15 +12 V 16 Board ID (PK) 19 serial IN 1 20 EMERG.STOP 21 -serial OUT 22 serial OUT 23 -A4 24 -A2 25 -AO

X11 Connection of the 2nd PL

Pin No.	Assignment
$1,2,3$	OV
$4,5,6$	do not assign
14 to 18	do not assign
7	-RESET
8	-WRITE EXTERN
9	WRITE EXTERN
10	-- 5
11	-A3
12	-Al
13	shield
19	serial IN 2
20	EMERG.STOP
21	-serial OUT
22	serial OUT
23	-A4
2Δ	- 10
25	-AO

X10 Connection to LE or to 1st PL

5.2.3 Connector Designation : PLC Analog Board PA 110

5.2.4 Pin Layout: PLC Analog Board PA 110

X1 Connection to LE or PL

Pin No.	Assignment
$1,2,3$	ov
$\mathbf{4}$	serial IN 2
$\mathbf{5 , 6 , 1 7 , 1 8}$	do not assign
$\mathbf{7}$	-RESET
8	-WRITE EXTERN
9	WRITE EXTERN
10	-A5
11	-A3
12	-A1
	shield
14.15	+ 12V
16	board identification
19	serial IN 1
20	EMERG.STOP
21	-serial OUT
22	serial OUT
23	-A4
24	-A2
25	-A0

X2, X3, X4, X5 Analog Inputs $\pm 10 \mathrm{~V}$

Pin No.	Assignment
1	power input $(\pm 10 \mathrm{~V})$
$\mathbf{3}$	shield

X6 Power Supply

Pin No.	Assignment
1	$+7 \Lambda \backslash$

X7, X8, X9, X10 Inputs of the Pt 100 Thermistor

Pin No.	Assignment	
1	I+ \quad constant current for Pt 100	
2	U_{+}	measuring input
3	U-	measuring input
4	$1-$	constant current for Pt 100
5	shield	

5.3 Connectors on the Keyboard Units

5.3.1 Connector Designation: TE 400

4820 E KD 6084

5.3.2 Pin Layout: TE 400

X1 Connection of the Soft Keys of the VDU (BC)

Flange socket with female insert (9-pin)

Pin No.	Assignment
1	SL0
2	SL1
3	SL2
4	SL3
5	do not assign
6	RL15
7	RL14
8	RL13
9	RL12

X2 Connection to the Logic Unit (LE)
Flange socket. with female insert (37-pin)

Pin No.	Assignment
1	RL0
2	RL1
3	RL2
4	RL3
5	RL4
6	RL5
7	RL6
8	RL7
9	RL8
10	RL9

11	RL10
12	RL11
13	RL12
14	RL13
15	RL14
16	RL15
17	RL16
18	RL17
19	RL18
20	SL0
21	SL1
22	SL2
23	SL3
24	SL4
25	SL5
26	SL6
27	SL7
28	RL19
29	RL20
30	do not assign
31	RL21
32	RL22
33	RL23
34	spindle override (wiper)
35	feed override (wiper)
36	$+5 V$
37	OV

5.3.3 Connector Designation: TE 410 (only customized version)

5.3.4 Pin Layout: TE 410

X1 Connection of the Soft Keys of the VDU (BC)
Flange socket with female insert (9-pin)

Pin No.	Assignment
1	SLO
2	SL1
3	SL2
4	SL3
5	do not assign
6	RL15
7	RL14
8	RL13
9	RL12

X2 Connection to the Logic Unit (LE)
Flange socket with female insert (37-pin)

Pin No.	Assignment
1	RLO
2	RL1
3	RL2
4	RL3
5	RL4
6	RL5
7	RL6
8	RL7
9	RL8
10	RL9

11	RL10
12	RL11
13	RL12
14	RL13
15	RL.14
16	RL15
17	RL16
18	RL17
19	RL18
20	SL0
21	SL1
22	SL2
23	SL3
24	SL4
25	SL5
26	SL6
27	SL7
28	RL19
29	RL20
30	do not assign
31	RL21
32	RL22
33	RL23
34	spindle override (wiper)
35	feed override (wiper)
36	$+5 V$
37	OV

X3 Connection to the Logic Unit (LE)

Flange socket with female insert (37-pin)

Pin No.	Assignment
1	1128 key non-functional
2	1129 coolant ON/OFF
3	1130 spindle OFF
4	1131 NC OFF
5	1132 NC ON
6	1133 directional key $X-(\mathrm{X}+$)
7	1134 directional key Y - (Z-)
8	1135 directional key $\mathrm{Z}-(\mathrm{Y}$-)
9	1136 directional key $Z+(Y+$)
10	1137 directional key $Y+(Z+)$
11	1138 directional key $\mathrm{X}+(\mathrm{X}$-)
12	1139 directional key VI+
13	1140 directional key VI-
14	1141 rapid traverse
15	1142 spindle ON
16	do not assign
17	do not assign
18	do not assign
19	1146 directional key V_{+}
20	1147 directional key V-
21	1148 spindle scanning mode
22	do not assign
23	do not assign
24	do not assign
25	do not assign
26	do not assign
27	do not assign
28	do not assign
29	do not assign
30	do not assign
31	do not assign
32	do not assign
33	do not assign
34	do not assign
35	do not assign
36	+24 V PLC
37	+24 V PLC

() $=$ version 02/04

5.4 Connectors on the Visual Display Units

5.4.1 Connector Designation: BC 110

5.4.2 Pin Layout: BC 110

XI Connection to the Logic Unit

Flange socket with female insert (15-pin)

Pin No.	Signal
7	R analog
9	V SYNC
10	H SYNC
11	O V
14	G analog
15	B analog

Keyboard Unit
Flange socket with female insert (9-pin)

Pin No.	Signal
1	SL0
$\mathbf{2}$	SL1
3	SL2
4	SL_3
6	RL15
7	RL14
8	RL13
9	RL.12

X3 Line Connection
Euro connector

X4 DC Connection for Ventilator

Terminal block

Pin No.	Signal
1	$+\mathbf{2 4 v}$
2	0 V

5.4.3 Connector Designation: BC 10 B

5.4.4 Pin Layout: BC 110 B

XI Connection to the Logic Unit see section 5.4.2

X3 Line Connection

Terminal block (3-pin)
Assignment according to label

X2 Connection of the Soft Keys to the Keyboard Unit
see section 5.4.2

X4 Voltage Output for External Units
Terminal block (Z-pin)

Pin	Signal
+	$6 \mathrm{~V}^{*}$
	ov

* max. load 0.9 A

6. Board Description

LE 407	LE 415
Processor Board Interface: Encoder inputs 3D Touch probe system Data interface RS 232C Data interface RS 422 Handwheel HR 130/330 Иhonitoring: Encoder inputs txis positions 'rogram memory)ata processing :mergency-Stop ;torage:)perating program (NC software) 'LC programs lachine parameters冫ompensation value lists JC programs (user programs)	Processor Board Interface: Data interface RS 232C Data interface RS 422 Handwheel HR 130/330 Monitoring: Emergency-Stop Storage: Operating program (NC software) PLC programs Machine parameters Compensation value tables NC programs (user programs) CLP Board Interface: Encoder inputs Ref. pulse inhibit 3D Touch probe system Monitoring: Encoder inputs Axis positions Program memory Data processing Emergency-Stop

PLC Graphics Board:

Interface:

57 PLC inputs
31PLC outputs
VDU
Keyboard unit
Machine operating panel
PLCl/O board

Monitoring:

Temperature
Voltages
Buffer battery

SERVICE MANUAL TNC 407/415

8. Power Supply

8.1 External Power Supply Requirements

The voltages must correspond to the following definitions:

Unit		Power Supply
LE	NC	24 V (VDE 0551)
	PLC	
PL 400		24 V (VDE 0550)

* Voltages up to 36 V … perm

Voltage Range DC Average Value	Max. Current Consumption	Power Consumption
Iower limit$20.4 \text { … }$	LE 415: 1.5 A LE 407: 1.3 A	approx. 30 W
	1.8 A if half of the inputs/outputs are active simultaneously	approx. 6 W if approx. $1 / 3$ of the inputs/ outputs are active simultaneously
upper limit $31 \mathrm{~V} . . .$	21 A if half of the inputs/outputs are active simultaneously	approx. 25 W if approx. $1 / 3$ of the inputs/ outputs are active simultaneously

8.1.1 Power Supply

The NC-part of the LE must not be connected to the control voltage of the machine tool. It requires its own external power supply generated separately according to the German Standard VDE 0551:
24 V DC voltage with a permissible AC component (ripple voltage) of 1.5 Vpp (recommended filtering capacitor $10000 \mu \mathrm{~F} / 40 \mathrm{~V}$-).

8.1.2 PLC Power Supply

The PLC-part (PLC inputs and outputs) of the LE and the PL 400 is operated with a control voltage of 24 V (of the machine tool), generated according to VDE 0550 (German Standard).

Superimposed AC voltage components arising from a non-controlled three-phase bridge connection with a ripple factor of 5% (see German Standard DIN 40110/10.75, section 1.2) are permissible. Thus, the highest absolute value for the upper voltage limit is 32.6 V ; the smallest absolute value for the lower voltage limit is 18.5 V .

The 0 V line of the PLC power supply must be connected to the central signal ground of the machine tool (ground line $0 \geq 6 \mathrm{~mm}^{2}$).

8.2 Power Supply of the Visual Display Units

Power Supply BC 110

Power Supply BC 1 10B

XI: Connection of the logic unit
X2: Connection of the keyboard unit (for soft keys)
X3: line connection

BC 110B		1		
110 V ~	220 V ~		220 V ~	
85 to 132 V ~	170 to 264 V ~	2V~	170 to 264 V ~	
T 2.0 A	T 2.0 A		F 3.15 A	
49 to 61 Hz		Hz		
Power consumption 60 W				60 W

X4: Connection of DC voltage BC 110

Designation	Assignment
1	+24 V
2	0 V

X4: Voltage output for external units ** BC 1 10B

Designation	Assignment
+	κV^{*}
	0 V

* max. load 0.9 A
** auxiliary voltage for keyboard driver,
if long cables are used

8.3 Power Supply of the NC Part

The power supply line for the NC is connected to the terminals of X31.
The different voltages for the LE are transformed from the voltage fed $(+24 \mathrm{~V})$ in the POWER SUPPLY assembly. (see block diagram, sec. 8.3.1)

The input and output voltages are displayed by LEDs. The states of the individual voltages are only displayed approximately by the LEDs. The exact values must be measured, and the measured values must correspond to the following table:

output	Unom [V]	Umin [V]	Umax [V]	Inom [V]
$+5 \mathrm{~V}$	+ 5.2	+ 5.18	+ 5.22	2.5
+12V	+ 12	+ 11.4	+ 12.6	0.15
+15V	+ 15	+ 14.4	+ 15.6	0.3
-15v	-15	14.4	15.6	0.15
U Bat	+ 4.5	+ 3.7		approx. $20 \mu \mathrm{~A}$
+ $12 \mathrm{VBE}{ }^{11}$	+ 12.3	+ 12	+ 12.6	1.5
+ $5 \mathrm{~V} * 1^{2}$	+ 5	+ 4.75	+ 5.25	0.3

1) +12 VBE is not required for TNC $407 / 415$
2) $+5 \mathrm{~V} * 1$ is a potential-free voltage.

NOTE:
Always switch off the main switch before engaging or disengaging any connectors, The power supply unit does not function during free run (basic load is required).

8.3.1 NC Power Supply for LE 407/415

With the current version the connector X2 is no longer required.
The strands are directly soldered to the power supply board.

8.4 Checking the Power Supply (Power Supply Unit)

Two low-voltage fuses are located on the power supply assembly. The fuse F 2.5 A protects the output voltage of $+24 \mathrm{VBE}{ }^{17}$, and the fuse F 4.0A protects the remaining voltages (see block diagram, section 8.3.1). If an error occurs in the power supply (all voltages are missing), first check the +24 V at the supply line and then the lowvoltage fuses.

By means of the test load unit, the power supply can be checked fast and easily. For this purpose the connectors to the power supply boards must be disconnected from the power supply and connected to the test load unit.

The different values can be measured at the sockets of the test load unit with a multimeter. The values and their tolerances can be seen from the table in section 8.3. If the measured values deviate distinctly from the values in the table, the power supply assembly is defective.

If no test load unit is available, the voltages can be measured at the measuring points on the processor board, the CLP board or the PLC graphics board. (Measuring points: see section 8.5)

1) The voltage of +24 V BE is not required for the TNC $407 / 415$, as the VDU has its own power supply,

NOTE:

Always switch off the main switch before engaging or disengaging any connectors The power supply unit does not function during free-run (basic load is required).

8.4.1 Measurement Setup with the Test Load Unit

8.5 Measuring Points on the Boards

8.5.1 Processor Board TNC 415

8.5.2 CLP Board TNC 415

8.5.3 Processor Board TNC 407

8.6 Power Supply of the PLC-Part

The power supply line for the internal PLC is connected to the terminal block X44 ($1=+24 \mathrm{~V}$ can be switched off, $2=+24 \mathrm{~V}$ cannot be switched off, $3=0 \mathrm{~V}$). The OV line as well as the +24 V (can be switched off) line may also be connected via connector X41 or X42 (see PLC Connection Schematic, section 8.6.2).

The PLC supply voltages are protected by means of low-voltage fuses on the PLC graphics board 24 V can be switched off low-voltage fuse F2.5 A 24 V cannot be switched off low-voltage fuse F 1 A

The power supply line for the PLC $1 / \mathrm{O}$ board PL 400 is connected to the terminal blocks $\mathrm{XI} 2(0 \mathrm{~V}), \mathrm{XI} 3(+24 \mathrm{~V}$ can be switched off) and the terminal strip X3/pin 12 (+24 V cannot be switched off). See PLC Connection Schematic, section 8.6.2.

There is no fuse on the PLC I/O board (electronic power limiter)

8.5.1 Measuring Points on the PLC Graphics Board

low-voltage fuses

8.6.2 Connection Schematic of the PLC Power Supply

The PLC outputs 00 to 023 are supplied via $\mathrm{X} 44 / \mathrm{pin} 1$ (24 V can be switched off) and can be reset by an external emergency stop.
The PLC outputs 024 to 030 are supplied via $\mathrm{X} 44 /$ pin 2 (24 V cannot be switched off) and cannot be reset by an external emergency stop.
However, all PLC outputs can be reset by an internal emergency stop (e.g. GROSS POSITIONING ERROR <AXIS> XY).
(The voltage at $\mathrm{X} 44 /$ /pin 2 must be connected, as it is used for the internal power supply of the PLC board and the graphics board.)

8.7 Buffer Battery

Exchange Buffer Battery

The buffer battery is the voltage source for the program memory, if the machine tool is switched off.

If the error message

EXCHANGE BUFFER BATTERY

appears, the batteries must be exchanged within one week.

The buffer batteries are located behind a screw fitting in the power supply of the LE 407/LE 415. To exchange, open the LE by undoing both snaps

In order to protect the program memory of the TNC 407, a capacitor (located on the processor board) is used in addition to the batteries. Thus, the line voltage may be switched off during battery exchange, Without the batteries the capacitor is capable of maintaining the memory contents for about one day. The TNC contains an additional accumulator so that without the batteries the memory contents remains stored for approx. two weeks.

NOTE:

The capacitor and the accumulator are only being charged when the TNC is switched on (charging time of the accumulator: approx. 24 hi.

Processor Board TNC 415

9. Keyboard Unit TE 400/4 10

9.1 Overview

TE 400

TE 410 (customized)

Version 01

Version 03

$V_{+}\left[Y^{\prime}-4\right], V_{+}$
$x \rightarrow 2 x$

Id.No. 25051701

Id.No. 258645 . .
(.. = version)

Version 03

(with protective frame)

Version 04

(with protective frame)'

9.2 Checking the Keyboard Unit

Example:

The key contacts can be measured with an ohmmeter at the flange socket X 2 of the keyboard unit The measuring adaptor can also be used, if available (see section 18.31.

If e.g.
is pressed at the TNC operating panel, $<100 \mathrm{~m} \Omega$ can be measured between pin 17 and pin 20 of the flange socket X2 at the TNC operating panel with the measuring adaptor (connections 17 and 20).

9.2.1 TNC Operating Panel (Key Matrix)

Key	Flange Socket X2 of Keyboard Unit	
	PIN	PIN
10	17	20
擼	17	21
\$	18	20
0	18	21
A	19	20
8	19	21
53	28	20
E	28	21
$)^{1}$	29	20
	29	21
$1+$	31	20
$=$	31	21
	32	20
11	17	22

Key	Flange Socket X 2 of Keyboard Unit	
	PIN	PIN
Q	17	23
W	18	22
E	18	23
R	19	22
T	19	23
Y	28	22
U	28	23
W1	29	22
0	29	23
P	31	22
K	31	23
(8ete	32	22
Efitit	17	24
A	17	25

Key	Flange Socket X2 of Keyboard Unit	
	PIN	PIN
S	18	24
D	18	25
5	19	24
(a)	19	25
H	28	24
U	28	25
K	29	24
1	29	25
5	31	24
\pm	31	25
5	32	24
54te	17	26
$\underline{2}$	17	27
X	18	26

Key	Flange Socket X2 of Keyboard Unit	
	PIN	PIN
C	18	27
\bigcirc	19	26
B	19	27
N	28	26
M	28	27
5	29	26
5	29	27
?	31	26
17	31	27
Fixict	32	26
PGEM	8	24
$\underset{\substack{\text { ctum } \\ \text { Pcm }}}{ }$	7	24
${ }_{\text {PGM }}^{\text {PALL }}$	6	24
ExT>	5	24
	6	22
mod	2	27

Key	Flange Socket X2 of Keyboard Unit	
	PIN	PIN
(iiij)	1	26
5mmermer	2	20
\rightarrow	3	27
$\widehat{ }$	5	26
(8)	1	27
國	2	26
包	3	26
3	4	26

Key	Flange Socket X2 of Keyboard Unit	
	PIN	PIN
${ }^{\text {Prowit }}$	4	20
	8	21
$\underset{\substack{\text { cycl } \\ \text { CALL }}}{ }$	7	21
LEL	6	21
LBL	5	21
stop	55	22
$\underset{\substack{\text { TooL } \\ \text { DEF }}}{ }$	88	20
Tron	7	20
R-	66	20
R ${ }^{\text {P }}$	55	20

\mathbf{X}	4	24
$\mathbf{7}$	3	24
$\mathbf{8}$	2	24
$\mathbf{9}$	1	24
\mathbf{Y}	4	23
4	3	23
5	2	23
6	1	23

Key	Flange Socket X2 of Keyboard Unit	
	PIN	PIN
\mathbf{Z}	4	23
$\mathbf{1}$	3	22
$\mathbf{2}$	2	22
$\mathbf{3}$	1	22
IV	4	21
$\mathbf{0}$	2	21
$\mathbf{-}$	3	21
$\boldsymbol{\mp} /-$	1	21

Key	Flange Socket X2 of Keyboard Unit	
	PIN	PIN
\mathbf{V}	9	24
\square	9	25
$+\mathbf{n}$	3	25
\mathbf{Q}	3	20
$\mathbf{C E}$	5	25
$\mathbf{\square I}$	4	25
\mathbf{P}	4	27
\mathbf{I}	5	27

Kev	$\begin{gathered} \hline \text { Flange_Socket } \\ \text { X2 of Keyboard } \\ \text { Unit } \end{gathered}$	
	PIN	PIN
(E0)	2	25
er	1	25
${ }_{\text {Ex }}^{\text {® }}$	1	20

$\boldsymbol{\dagger}$	8	25
$\boldsymbol{\sim}$	6	25
Ean	7	25
\rightarrow	8	26
\downarrow	16	26

Checking the Potentiometers of the TNC Operating Panel

If an ohmmeter is connected to the pins, the following resistances can be measured (use a measuring adaptor, if available):

Potentiometer	Flange Socket X2 of Keyboard Unit PIN			Measured Value	
		PIN	Position	Position 0	
	36	35	9.7 k	4.7 k	
Feed Override Pot	37	35	4.7 k	9.7 k	
Spindle Override Pot	36	34	9.7 k	4.7 k	
	37	34	4.7 k	9.7 k	

If a measuring adaptor is available, connect this adaptor between the logic unit and the keyboard unit.
Now the wiper voltages of the potentiometers can be measured at the above pins (values: approx. 0 to 4.95 V).

9.2.2 Machine Operating Panel

Key of Version		Flange Socket X2 of Keyboard Unit	
01/03	02/04	PIN	PIN
V174	V4	12	36, 37
25	$\mathrm{Y}=$	8	36,37
Y	Z	10	36, 37
$\mathrm{v}+$	V_{+}	19	36,37
X	-	11	36,37
0	\%ry	14	36,37
$\xrightarrow{\mathrm{X}=}$	$\xrightarrow{\text { ¢ }}$	6	36,37
Y 4	2\%	7	36,37
2+1	Y*	9	36,37
V-	VV-	13	36,37
V	v	20	36,37

Key	Flange Socket X2 of Keyboard Unit	
	PIN	PIN
(1)0	3	36,37
[1]	15	36,37
[15-	21	36,37
5	1	36,37
\pm	2	36,37
$N C$ 0	4	36,37
$N C$ 1	5	36,37

9.2.3 Screen Soft Keys

Key	Flange Socket X1 of Keyboard Unit	
	PIN	PIN
P	8	1
SK1	9	1
	6	2

Key	Flange Socket X1 of Keyboard Unit	
	PIN	PIN
SK2	8	2
SK3	9	2
SK4	6	3
SK5	7	3

Key	Flange Socket X1 of Keyboard Unit	
	PIN	PIN
SK6	8	3
SK7	9	3
SK8	6	4
D	7	4

10. Visual Display Unit BC 11 O/I 10B

10.1 Overview

BC 110 Id. No. $25474001 \quad$ BC 110B Id.No. 26052001

10.2. Checking the Visual Display Unit

BC 110 B Id.No. 26052001

If the screen remains dark when the machine is switched on, first check the power supply (line voltage) of the VDU. If the voltage supply is functioning properly, a square highlighted field can be generated on the screen of the VDU (which must be switched on) by pressing the external test button on the back side of the unit.

If the VDU generates this highlighted field, the PLC graphics board in the logic unit is probably defective. If however, the VDU remains dark after the test button was pressed, the VDU is defective and must be exchanged.

BC 110 B Id.No. 26052001

If the screen remains dark when the machine is switched on, first check the power supply (line voltage) of the VDU. The control signals of the VDU can only be checked by means of an oscilloscope.

The following diagrams were drawn while the VDU was connected. The colour signals R-analog, G-analog and B-analog may be shaped differently (depending on machine parameters and the current screen display).
Pin layout see sections 5.1.6 and 5.4.

Diagrams

[^3]

11. Encoders

11.1 Error Messages

ENCODER <AXIS > DEFECTIVEXY

$Y=A$: Signal amplitude too low
B: Frequency exceeded
C: Wrong reference mark spacing
$\mathrm{x}=\mathrm{CPU}$ number $1=$ Main processor
$2=$ Geometry processor
$3=$ CLP processor

11.2 Error Causes

Glass scale contaminated or defective
Scanning head contaminated or defective
Cable damaged

- Encoder input of the logic unit (LE) defective

11.3 Checking the Encoders

In order to determine whether the encoder or the encoder input of the logic unit is defective, the encoders can be switched at the logic unit For this purpose, the corresponding machine parameters must be altered as well.

Function		MP	Input Value	
Allocation of the axes	X	110.0	$0=$	XI
	Y	110.1	$1=$	x2
	Z	110.2	$2=$	x3
	IV	110.3	$3=$	x4
	V	110.4	$4=$	x5
			$5=$	X6*

* X6 may only be used for a machine tool axis, if no spindle orientation is required.

Proceeding if an error message is displayed

e.g. ENCODERX DEFECTIVE 3B

- Switch off main switch.

Switch encoder X -axis with e.g. encoder Y -axis at the logic unit.
Switch on main switch.
If the error message POWER INTERRUPTED is generated, call the machine parameters with the code number 95148 and switch the entry values of the machine parameters 110.0 and 110.1.
Exit the machine parameters and switch on the machine as usual.
If the same error message POWER INTERRUPTED is generated again, the error is located in the encoder or in the extension cable. If the error message now says " Y " instead of " X ", the encoder input of the logic unit is defective.

11.3.1 Electrical Check of Encoders

In order go give a precise statement on the electrical function of an encoder, it must be measured with a phase angle measuring unit (PWM), an oscilloscope and an impedance tester. (see operating instructions Encoder Diagnostic Kit)

If no phase angle measuring unit is available, the electrical state of the cable, the lamp and the photocells of an encoder can be checked with an ohmmeter. The following resistances must be measured at the connector of the encoder:

Encoder connector housing against machine housing (external shield)
Encoder connector housing against pin 9 (internal shield against external shield)

- Encoder connector housing against pins 1 to 8 (external shield against signal lines)

Pin 9 against pins 1 to 8 (internal shield signal lines)
$R<1 \Omega$
$R=\infty$
$R=\infty$
$R=\infty$

Pin 1 against pin 2 "
Pin 2 against pin 10 "
Pin 5 against pin 6 90"

- Pin 6 against pin 5 90"

Pin 7 against pin 8 ref. pulse *
Pin 8 against pin 7 ref. pulse *

- Pin 3 against pin $4^{* *}$ (approx. 5-30 Ω)
(switch poles of ohmmeter)
(switch poles of ohmmeter)
(switch poles of ohmmeter)

The measured values should be approximately equal.
*If encoders with selectable reference marks are used, different resistance values are measured (or no resistance), depending on the type of activation.
**The encoder check (pin 3 against pin 4) can only be carried out, if the encoder light unit is a lamp. With encoders with an amplifier section, the light unit cannot be checked at all. With encoders with infrared diodes a resistance in the conducting direction can be measured between pin $3(+)$ and pin $4(-)$.

Basic Circuit Diagram with Sinusoidal Signals

Encoders with square-wave output signals can only be tested with a phase angle measuring unit (PWM)

12. Handwheel HR 130/330

12.1 Overview

HR 130	Id.No. $254040-$
HR 130.001	Id.No. 249371 -

HR 330
Id.No. 251 534--
Cable Adaptor for HR 330 ld.No. 249889 -

12.2 Checking the Handwheel HR 130/330

The serial handwheels HR 130 and HR 330 can only be tested with an oscilloscope. The controls sjianals (X 23 /pin $6=$ DTR. pin $8=R \times D$) must correspond to the diagram at the left.

The supply voltage for the handwheel is fed via the logic unit ($\mathrm{X} 23 /$ pin $2=\mathrm{OV}$, pin $4=+12 \mathrm{~V}$).

[^4]
12.3 Error Messages

HANDWHEEL ?

Data transfer (cable) has been interrupted.

HANDWHEEL DEFECTIVE
The light unit in the electronic handwheel is not emitting enough light, with the result that the signals in the handwheel are too small. An error signal is sent over the serial interface of the handwheel.

HANDWHEEL NOT READY
X
$X=A: \quad$ No manual handwheel connected
B: Identification code of the manual handwheel does not match MP7640
CY: Contamination, $Y=$ axis identification (only for multi-axis handwheel)
D: Error during receipt of data
E: Incorrect BCC check sum received
F: Manual handwheel outputs "Wrong identification received"
G: Manual handwheel outputs 'Incorrect BBC check sum received"
H: Manual handwheel outputs "Transmission error"
I: Manual handwheel outputs "Wrong number of initialising parameter received"
J: Manual handwheel outputs "Wrong value of initialising parameter received"

13. 3D Touch Probe Systems

13.1 Overview

13.1.1 Touch Probe Systems with External APE

TS 111, Id. No. 237400 --
with connecting cable

APE 110, Id.No. 230465 for TS 111 for TS 511
for TS 511 and APE 511, Id.No. 237586 additional connection for a 2nd SE 510

TS 511, Id. No. 237402 -with infra-red transmission

SE 510, Id.No. 230473 -

13.1.2 Touch Probe Systems with Integrated APE

TS 120, Id.No. 243614 -

Cable Adaptor for TS 120, Id.No. 244891 -

D-83292 Traunreut. ©

13.2 Error Messages

TOUCH POINT INACCESSIBLE

After the start of a probing function, the scanning point was not reached within the measuring range defined in the machine parameter MP6130.

EXCHANGE TOUCH PROBE BATTERY

The battery voltage of the touch probe system with infrared transmission is below the minimum value.

STYLUS ALREADY IN CONTACT

- The stylus was already deflected when the probing function was started.

PROBE SYSTEM NOT READY

The infrared transmission between the "Touch Probe" and the "Transmitter/Receiver Unit" is faulty (e.g. caused by contamination) or interrupted. The two windows of the touch probe system must be oriented to the transmitter/receiver unit. The battery is dead.

13.2.2 Error Messages during Digitizing of 3D-Contours

WRONG AXIS PROGRAMMED

The touch probe axis in the scanning cycle RANGE is not identical to the calibrated touch probe axis.

FAULTY RANGE DATA

- A MIN coordinate value in the scanning cycle RANGE is equal to or larger than the corresponding MAX coordinate value.
- One or more coordinates are beyond the limit switch range of the scanning cycle RANGE. A scanning cycle RANGE was already defined when the scanning cycles MEANDER or CONTOUR LINES were called.

MIRRORING NOT PERMITTED

ROTATION NOT PERMITTED

SCALING FACTOR NOT PERMITTED

Mirroring, rotation or scaling factor were active when the scanning cycles RANGE, MEANDER or CONTOUR LINES were called.

RANGE EXCEEDED

The range has been exceeded during scanning, i.e. a part of the 3D-contour is outside the range.

CYCL-PARAMETER INCORRECT

The programmed travel or the distance between lines or points is negative or larger than 56535 mm (only possible via Q-parameter programming)

TOUCH POINT INACCESSIBLE

The stylus was deflected before the range was reached during approach.

- In the cycle CONTOUR LINES, the stylus was not deflected within the probing range.

STYLUS ALREADY IN CONTACT

The stylus is not at rest, although it is not touching the contour,

PLANE WRONGLY DEFINED

One of the coordinates of the starting point in the cycle CONTOUR LINES is identical with the touch probe axis.

START POSITION INCORRECT

- The starting point coordinate that is identical to the starting probe axis, is beyond the range

AXIS DOUBLE PROGRAMMED

The same axis has been programmed for both starting point coordinates in the cycle CONTOUR LINES.

TIME LIMIT EXCEEDED

In the scanning cycle CONTOUR LINES the first point of the scanned line was not reached within the programmed time limit.

14. Data Interfaces

14.1 Operating Modes

For data transfer the TNC 407/415 can be switched to the following 5 interface operating modes:
For connection of the HEIDENHAIN Magnetic Tape Unit ME 101/102 or other peripheral units (e.g. printer); data transfer in standard data format; data format (7 data bits, 1 stop bit, even parity) and Baud rate (2400 bd) adapted to the ME.

For connection of the HEIDENHAIN Floppy Disk Unit FE 401 or other peripheral units (e.g. personal computer with HEIDENHAIN data transfer software). Data are transferred with a special protocol (blockwise transfer) for data security. Data format 17 data bits, 1 stop bit, even parity) and the transfer protocol are adapted to the FE 401. In the interface mode FE 2 the file names must be noted down for output of machine parameters, compensation value lists and PLC-programs, as the directory of the external data medium cannot be displayed by the TNC and the file name is needed again for data input.

If the floppy disk unit FE 401 is used as an external data medium, no letters are permitted in program names.
When using the FE 401 the Baud rate at the control must be set to 9600

For connection of the HEIDENHAIN Floppy Disk Unit FE 4018 (or FE 401, software version 23062603 and later) or other peripheral units. Data are transferred with a special protocol (blockwise transfer) for data security. Data format (7 data bits, 1 stop bit, even parity) and the transfer protocol are adapted to the FE 401/B. The disk directory is automatically displayed by the TNC (ESC sequence).
All characters are permitted for program names.
The Baud rate set at the TNC must always match that of the FE 410/B.
Possible Baud rates are 2400, 4800, 9600, 19200 and 38400.

Peripheral units for the EXT operating mode are:
Tape punching units and punched tape readers
Printers or matrix printers for graphic printouts
Mass storage media or programming stations for "Blockwise Transfer"
Programming stations and personal computers for external programming

The Baud rate set at the TNC must always match that of the peripheral unit.
Possible Baud rates: 110 to 38400.

14.2 Interface Configuration and Allocation of the Operating Modes

In addition to the main operating modes the TNC features auxiliary modes or MOD-functions which permit additional displays and settings.

After pressing MOD in the operating modes EDIT PROGRAM and TEST RUN the following functions can be selected via soft key:

\boldsymbol{O}	RS 232 RS 422 SETUP	USER PARA- METER				

The MOD function for the settings of the data interfaces is selected with the soft key RS 232 /R 422 SETUP and displayed on the screen:

Note:

With the machine parameter MP5000 interfaces can be disabled. If the entry value is 0 , no interface is disabled.

On the right half of the screen the interface RS 232C (V.24) is configured, on the left half the interface RS 422C (V.II). On the left side (lower part of the screen) the operating modes PROGRAMMING AND EDITING, PROGRAM RUN/FULL SEQUENCE and TEST RUN can be allocated to either RS 232 or RS 422. (If the MOD function RS 232 /R 422 SETUP is called in the PLC editor or the machine parameter editor, the editor can be allocated to either RS 232 or RS 422.)

On the right side (lower part of the screen) the user can determine via PRINT and PRINT TEST whether outputs with FN 15 and digitized positions are to be output via one of the interfaces or into a file in the memory of the control:

RS 232 means: Data are output via the data interface RS 232.
RS 422 means: Data are output via the data interface RS 422.
-FILE means: Data are filed in the TNC.

With the arrow keys

(operating mode, Baud rate and interface allocation) may be selected and set according to your requirements by pressing

Exit the MOD function RS 232/RS 422 SETUP by pressing the soft key END

14.3 Connecting Cables and Adaptors for the RS 232C Interface

14.3.1 Wiring Diagram and Adaptor of the RS 232C Interface

The data lines and the control lines of the cable between the LE 407/415 and the RS 232C adaptor block (Id.No. 239760 ..) are transposed. The pin layout at the connector X21 of the LE 407/415 corresponds that of a data circuit terminating equipment (DCE). Due to the transposed data lines and control lines in the cable between the LE 407/415 and the RS 232C adaptor the allocation at the RS 232C adaptor corresponds to a data terminal equipment (DTE). Thus, the external units may be connected to the RS 232C adaptor via the standard HEIDENHAIN data transfer cable (Id.No. 242869 01).

[^5]
14.3.2 Wiring Diagram and Adaptor of the RS 422 Data Interface

Advantage of the RS 422 data interface:
If a Baud rate of $\mathbf{3 8} \mathbf{4 0 0}$ has been selected with the RS 422 interface, data transfer over a cable length of 1 km is possible.
(60) The pin assignment of the RS 422 is the same at the logic unit X22 and at the adaptor block RS 422

14.4 Machine Parameters for the Data Interfaces

The detailed functions of the machine parameters are explained in the TNC Manual for Machine Tool Manufacturers and in the information on the data interface RS232CN. 24.

In the operating modes ME, FE1 and FE2, the interface parameters are fixed. In the operating modes EXT1 and EXT2, the interface parameters may be determined via machine parameters

All machine parameters for the data interfaces are user parameters, i.e. they can be selected with the code number 123.

14.4.1 Machine Parameters for the Standard Interface (e.g. for ME 101, printer)

MP for EXT1	MP for EXT2	Entry Values	Function
5020.0	5020.1	168	7 data bits, transfer stop by DC3, parity bit (even parity), 1 stop bit
5030.0	5030.1	0	Standard data interface
5201.0	5201.1	3	Control character for end of program = ETX

The data format and the type of transfer stop must be set at the printer according to the values of MP5020.0 and MP5020.1.

14.4.2 Machine Parameters for Blockwise Transfer (e.g. for FE 401/B, personal computer with HEIDENHAIN data transfer software)

MP for EXT1	MP for EXT2	Entry Values	Function
5020.0	5020.1	168	7 data bits, transfer stop by DC3, parity bit (even parity), 1 stop bit
5030.0	5030.1	1^{21}	Blockwise Transfer
5200.0	5201.1	2^{21}	Control character for program start = STX
5201.0	5201.1	3^{21}	Control character for end of program = ETX
5202.0	5202.1	72^{21}	1. ASCII character for data input $=\mathrm{H}^{1)}$ (e.g. $\mathrm{H}=$ NC program in HEIDENHAIN plain language)
5203.0	5203.1	69^{21}	2. ASCII character for data input $=\mathrm{E}$
5204.0	5204.1	72^{21}	1. ASCII character for data output $=\mathrm{H}^{1)}$ (e.g. $\mathrm{H}=\mathrm{NC}$ program in HEIDENHAIN plain language)
5205.0	5205.1	65"	2. ASCII character for data output = A
5206.0	5206.1	$1^{2 /}$	ASCII character for start of command block $=\mathrm{SOH}$
5207.0	5207.1	$23^{2)}$	ASCII character for end of command block = ETB
5208.0	5208.1	$6^{2)}$	ASCII character for positive acknowledgement = ACK
5209.0	5209.1	212	ASCII character for negative acknowledgement = NAK
5210.0	5210.1	42)	ASCII character for end of transfer = EOT

1) ASCII characters are only valid for the transfer of NC programs.
2) If these machine parameters are programmed with 0 , the standard values apply.

14.5. Error Messages

14.5.1 Error Messages at the TNC in the ME-Mode

WRONG OPERATING MODE

- The wrong operating mode no operating mode was selected on the external data medium

WRONG PROGRAM DATA

Wrong program data have been detected during data transfer. The control attempted three times to read the data from the magnetic tape before interrupting the process.

DATA MEDIUM MISSING

No cassette has been inserted into the drive.

DATA MEDIUM EMPTY

No programs are stored on the data medium (cassette).

DATA MEDIUM WRITE-PROTECTED

The write-enable plug on the cassette is missing

PROGRAM INCOMPLETE

- Data transfer was interrupted before the program was transferred completely.

EXT. INPUT/OUTPUT NOT READY

The DSR-signal is missing at the TNC.
ME not connected

- Defective or wrong transfer cable

Wrong interface assignment

ME: TAPE END

The cassette is full. To continue data transfer, turn over or exchange the cassette.

14.5.2 Error Messages at the ME

In the ME the electronics is tested, and the external operating conditions are checked. If an error is detected, the lamps of the operating mode display start blinking. In the following table the error types are listed:

0 LED off * LED blinking

Indicator Lamp	Error Message
$\begin{aligned} & \mathrm{OOO} \\ & 0 \\ & 0 \end{aligned} 001$	Faulty data during transfer
$\begin{aligned} & 00 * 0 \\ & 00000 \\ & \hline \end{aligned}$	No cassette inserted
$\begin{array}{lll} \mathrm{OO} \\ 0 & \text { * } \\ 0 & 0 & 0 \\ \hline \end{array}$	Write-enable plug in cassette missing
$\begin{aligned} & 0 * O O \\ & 00000 \\ & \hline \end{aligned}$	Wrong operating mode selected
$\begin{aligned} & \text { O*O* } \\ & 00 \\ & 0 \\ & \hline \end{aligned}$	Data of magnetic tape faulty
$\begin{aligned} & \text { O * * O } \\ & 00000 \\ & \hline \end{aligned}$	Magnetic tape blank
$\begin{aligned} & * 000 \\ & 0000 \\ & \hline \end{aligned}$	
$\begin{aligned} & * 00 * \\ & \text { OOOO } \\ & \hline \end{aligned}$	
$\begin{aligned} & * 0 * 0 \\ & 0000 \\ & \hline \end{aligned}$	Errors in ME electronics
$\begin{aligned} & \text { *O* * } \\ & 0000 \\ & \hline \end{aligned}$	
$\begin{array}{r} * * 00 \\ 0000 \\ \hline \end{array}$	
$\begin{aligned} & \text { **O* } \\ & \text { OOOO } \\ & \hline \end{aligned}$	
$\begin{aligned} & * * * * \\ & 000 \\ & \hline \end{aligned}$	End of tape
$\begin{aligned} & \mathrm{O} \text { * * * } \\ & 0 \\ & 0 \end{aligned} 000$	Peripheral unit not connected
$\begin{aligned} & * * * O \\ & 00000 \\ & \hline \end{aligned}$	Data transfer between TNC and ME/peripheral unit was interrupted with

14.5.3 Error Messages at the FE in the ME-Mode

In the ME-mode, errors are displayed by blinking indicator lamps (LEDs).
0 LED off - LED on * LED blinking

$\begin{aligned} & 000 \bullet \\ & 0 * 00 \\ & \hline \end{aligned}$	Disk missing or error in the ME electronics
$\begin{aligned} & \text { OOO* } \\ & \text { O*OO } \\ & \hline \end{aligned}$	Disk cannot be formatted, as it is currently being used
$\begin{array}{r} * O O \bullet \\ * 000 \\ \hline \end{array}$	Disk missing or not formatted
$\begin{aligned} & * O O * \\ & * 000 \\ & \hline \end{aligned}$	Disk cannot be copied, as a read/write process is active
$\begin{array}{lll} \bullet & 0^{*} @ \\ 0 & 0 & 0 \\ \hline \end{array}$	External unit not ready or not connected
$\begin{aligned} & * O \bullet e \\ & 00000 \\ & \hline \end{aligned}$	Disk missing or not formatted
$\begin{aligned} & * 00 \bullet \\ & 00 \bullet 0 \\ & \hline \end{aligned}$	Disk missing or not formatted or no program available
$\begin{array}{lll} * & O & * \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \hline \end{array}$	Program cannot be output, as a transfer is active via the TNC interface
$\begin{aligned} & * O O * \\ & 00.0 \\ & \hline \end{aligned}$	Program cannot be output, as a transfer is active via the PRT interface
$\begin{aligned} & \text { OO* } \bullet \\ & \bullet \quad 000 \\ & \hline \end{aligned}$	External unit not ready or not formatted
$\begin{array}{r} 00 \bullet \bullet \\ * 000 \\ \hline \end{array}$	Disk missing or not formatted
$\begin{aligned} & \hline 000 \bullet \\ & * 0 \bullet 0 \\ & \hline \end{aligned}$	Disk missing or not formatted
$\begin{aligned} & 00 \bullet * \\ & * 000 \\ & \hline \end{aligned}$	Program cannot be output, as a transfer is active via the TNC interface
$\begin{aligned} & \text { OOO* } \\ & \text { *O•O } \\ & \hline \end{aligned}$	Program cannot be output, as a transfer is active via the PRT interface
$\begin{aligned} & 0 \bullet 0 \bullet \\ & 00 * O \\ & \hline \end{aligned}$	External unit not ready or not connected
$\begin{array}{r} 0 * 0 \bullet \\ 00 \bullet 0 \\ \hline \end{array}$	Disk missing or error in the ME electronics
$\begin{aligned} & \text { O*O* } \\ & \text { OO•O } \\ & \hline \end{aligned}$	Table of contents cannot be output, as a transfer is active via the PRT interface
$\begin{aligned} & 000 * \\ & 00 \bullet 0 \\ & \hline \end{aligned}$	No interface coupling possible, as a transfer is active via the TNC interface
$\begin{array}{lll} O & O & * \\ 0 & 0 & 0 \\ \hline \end{array}$	No interface coupling possible, as a transfer is active via the PRT interface
$\begin{array}{lll} \hline 0 & 0 & * \\ 0 & 0 & 0 \\ \hline \end{array}$	External unit not ready or not connected

stop
By pressing
the error messages can be cleared.

HEIDENHAIN

14.5.4 Error Messages at the TNC in the FE-Mode

In this operating mode, the floppy disk unit outputs errors in the following format:
(SOH) ERR: (SP) (SP) (SP) [XXX] (ETB) (BCC)
XXX = error number
The following errors can be displayed on the screen:

Input/output errors:

ERR: 001 = wrong command code
ERR: 002 = illegal program name
ERR: 003 = faulty data transfer
ERR: $004=$ program incomplete
ERR: $005=$ receiving buffer overflow
ERR: 006 = function currently disabled
ERR: 007 = data-buffer overflow

Errors during program write or read:

ERR: 010 = program not on disk
ERR: 011 = program erase-protected
ERR: 012 = program is being written to
ERR: 013 = program directory is full
ERR: 014 = disk is full
ERR: $015=$ text not found
ERR: 016 = program name already exists
ERR: 017 = disk access active
ERR: 018 = program currently being read

Disk / Drive / Controller Errors:

ERR: 100 = disk not initialized
ERR: $101=$ sector number too large ${ }^{1)}$
ERR: 102 = drive not ready ${ }^{2)}$
ERR: 103 = disk is write-protected
ERR: 104 = faulty data on disk ${ }^{1)}$
ERR: 105 = sector cannot be found ${ }^{11}$
ERR: $106=$ check sum incorrect ${ }^{1)}$
ERR: 107 = disk controller defective ${ }^{3 \text {) }}$
ERR: $108=$ DMA defective ${ }^{31}$
ERR: $109=$ disk exchanged during program loading

1) These error messages indicate that the disk is defective; in most cases, they can only be eliminated by formatting the disk anew.
${ }^{2)}$ If this error message comes up while the disk is inserted, the drive is defective.
2) Hardware error

14.5.5 Error Messages during Data Transfer

TRANSFERRED VALUE ERRONEOUS X

$\mathrm{X}=\mathrm{A} \quad$ faulty character frame
B character overflow
C character frame or character overflow
D parity error
E character frame or parity error
F character overflow or parity error
G character frame or parity error
H receiving-buffer overflow
K
L \} incorrect ESC sequence (only in ME-mode)

TRANSFERRED DATA INCORRECT X

$\mathrm{X}=\mathrm{A} \quad$ character frame faulty
D parity error
M control has received the character for "negative acknowledgement" (NAK) more than 3 times
N control has sent the character for "negative acknowledgement" (NAK) more than 3 times

BAUD RATE NOT POSSIBLE

If both data interfaces are activated simultaneously (RS 232 / RS 422), the baud rates of both interfaces must be the same.

INTERFACE ALREADY ASSIGNED

A data interface cannot be used for two operating modes simultaneously (e.g. DNC-mode and programming at the same time is not possible with one data interface).

EXT. IN-/OUTPUT NOT READY

DSR signal at the TNC missing
Defective or wrong transfer cable
Wrong interface assignment

PROGRAM INCOMPLETE

Data transfer was interrupted before the program was completely loaded

15. External Data Transfer

15.1 Data Transfer Menu

In the operating mode EDITING files can be read in and from the TNC. Press at the VDU to activate this operating mode.

To activate the data transfer menu, press
in the operating mode EDITING.

The memory contents of the TNC is displayed on the left side of the screen, the memory contents of the external unit (if there is any) on the right side. (Only in the data interface mode FE1 is the memory contents of the external unit displayed automatically. With all other data interface modes the memory contents of the external unit can be loaded by means of a soft key.) The arrow keys of the TNC operating panel serve to select a program for data transfer,

The data transfer commands are displayed in the soft-key row.
Soft-key commands in the FE1 mode:

PAGE $\widehat{\imath}$	$\begin{gathered} \text { PAGE } \\ \pi \end{gathered}$	TRANSFER $\mathrm{TNC}-\geqslant \mathrm{EXT}$	TRANSFER \square \square $\mathrm{TNC} \rightarrow \text { EXT }$	TRANSFER ? \square TNC \rightarrow EXT	SHOW ALL	$\begin{gathered} \text { RENAME } \\ \mathrm{ABC}-\mathrm{XYZ} \end{gathered}$	END
Upwards page by page	Downwards page by page	Transfer sleeted program from to	Transfer all programs from...	Transfer pro grams from ... to ... after confirmation	Show all files	Rename selected program (only TNC)	Exit EXT function

Soft-key commands in the modes FE2, ME, EXT1, EXT2:

Interrupting the Data Transfer

Once data transfer has been started, it can be interrupted by pressing
at the TNC.
If the data transfer is interrupted, the error message
PROGRAM INCOMPLETE is generated.

15.2 Overview of All Files in RAM

File	File Extension	File Directly	Selection via Code Number
NC programs HEIDENHAIN language	. H	X	
NC programs ISO	. 1	X	
Tool files	. T	x	
Pallet tables	.P	x	
Datum tables	. D	X	
Text files	A	x	
Machine parameters	. MP		X
Compensation value list	KOR		x
PLC program	.PLC		X
Error messages 1. language	.ER1		x
Error messages English	.ERE		X
Dialogs 1. language	.DI1		X
Dialogs English	.DIE		X
Text files	.A		X

Additional information on the files and programs is provided by letters in the status field:
E: The file/program has been selected in the PROGRAMMING mode.
S: The file/program has been selected and activated in the TEST RUN mode.
M: The file/program has been selected and activated in either PROGRAM RUN/ FULL SEQUENCE or in PROGRAM RUN/SINGLE BLOCK.
P : The file/program is protected against erasing and editing.
$\mid \mathbb{N}:$ The file/program was programmed in Inch.
W:The file/program was not completely transferred to the external memory and thus is no longer available.

15.3 External Data Output

Preparations:

Connect the external data medium (ME, FE or other peripheral unit, e.g. personal computer with HEIDENHAIN data transfer software) to the TNC.
Prepare the external data medium for data transfer:

Select the operating mode, the Baud rate and the interface assignment (see sections 14.1 and 14.2) at the TNC.

The ME (Magnetic Tape Unit) is not very suitable as an external data medium, as only one file can be stored on one side of a cassette.

15.3.1 Output of Files with the Extensions .H, .I, .T*, .D, .P, .A to an External Data Medium

(Note down the file name of the ASCII file XXX.A in the interface mode FE2, as the TNC cannot display the directory of the external data medium.)

The TNC features several file types to facilitate searching and selecting files.
The different file types are distinguished by their names and their extensions.
The following six different file types can be selected via soft keys:
HEIDENHAIN plain language programs <file name>.H

ISO programs
Tool files
Datum tables
Pallet tables
Text files (ASCII files)
<file name>.l
<file name>. T*
<file name>.D
<file name>. P
<file name>.A
Function
Switch TNC to operating mode EDITING
(key on VDU)
Activate data transfer menu
Soft key >SHOW ALL< to display all file types
Use arrow key at the VDU to switch the soft-key
row to the file type display
Soft key >SHOW . $<$ < to select requested file
type

[^6]To output the file TOOL.T it needs to be copied into another tool table: it can be stored on the external data medium under the new file name

Copying TOOL.T to XXX.T

Function
Switch TNC to operating mode EDITING
(key on VDU)
Display of file names
Soft key >SHOW ALL< to display all file types
Use arrow key at the VDU to switch the soft-key
row to the file type display

Clutput of the new file XXX.T: see section 15.3.1

15.3.2 Machine Parameter Output to an External Data Medium

(Note down the file name of the ASCII file XxX.A in the interface mode FE2, as the TNC cannot display the directory of the external data medium.)

15.3.4 Output of the Compensation Value List for Multipoint Axis Error Compensation

(Note down the file name of the ASCII file xxx.A in the interface mode FE2, as the TNC cannot display the directory of the external data medium.)

153.5 Output of PLC Program, Error Messages and Dialogs

The PLC comprises a file manager for all file types. The following file types are possible:

	File Extension	
File Contents	EPROM Files	RAM Files
PLC Program	.PCE	.PLC
Error Messages, first language	.EE1*	.ER1*
Error Messages, English	.EEE*	.ERE*
Dialogs of OEM cycles, first language	. DE1* *	. DI1* *
Dialogs of OEM cycles, English	. DEE* *	. DIE* *
ASCII files		.A^{*}

* Notes:

The error messages, dialogs and ASCII files are output as ASCII files with the file extension .A. For this reason, the files must have different names when they are to be read out so that they are not overwritten on the external data medium. (If necessary, rename files using the soft key $>$ RENAME<.)

Note down file name and extension

During data input the file extension .A must be replaced with the original extension.

In general only the files in the RAM must be stored on an external data medium.
(Note down the file name of the ASCII file $x x x$.A in the interface mode FE2. as the TNC cannot display the directory of the external data medium.)

Press Key	Function Switch TNC to operating mode EDITING (key on VDU) Prepare TNC for input of code number Enter code number, acknowledge with ENT Activate data transfer menu
Soft key >SHOW ALL< to display all file types	
Use arrow key at the VDU to switch the soft-key	
row to the desired extension	
Soft key > XXX FILES< for desired extension	
Switch soft-key row back to data transfer menu	
If necessary: select desired file with arrow key	
If necessary: rename file with soft key	
$>R E N A M E<$ (see 15.3.5)	
Soft key >TRANSFER< to transfer data	

Several programs with the extension .PLC may be stored in the RAM.
The selected program is marked by an " S " in the status window. Note down the program name so that you can reselect it after the downloading process.

15.4 Downloading External Data

Preparations:

Connect the external data medium (ME, FE or other peripheral unit) to the TNC.
Prepare the external data medium for data transfer:

- Select the operating mode, the Baud rate and the interface assignment (see 14.1 and 14.2) at the TNC.

15.4.1 Downloading Files with the Extensions .H, .I, .T**, .D, .P, .A*

Function
Activate data transfer menu
Go to the directory of the external data medium
(key on VDU) to operating mode EDITING
Soft key >SHOW ALL< to display all file types
Use arrow key at the VDU to switch the soft-key
row to the file type display
Soft key >SHOW.X< to select requested file
type
Use arrow key at the VDU to switch the soft-key
row back to the data transfer menu
Soft key >SHOW ALL< or >SHOW EXT
DIRECTORY \quad to display the directory of the ext.
data medium at the TNC

* In the interface modes FEZ, EXT1 and EXT2 the name of the ASCII file must be entered manually, as it cannot be displayed by the TNC.
** The file TOOL.T always contains the tool table that is read by the TNC. TOOL.T cannot be edited, read out or downloaded. In the TNC several files Xxx.T may be stored. The tool table (xxx.T) the TNC is supposed to read must be copied into TOOL.T. I.e. after downloading the files $x x x$.T, the current tool table still needs to be copied into TOOL.T (see section 15.3.1).

Copying the file xxx.T into TOOL.T

Press Key	Funntinn Switch TNC to operating mode EDITING (key on VDU) Display of file names
Soft key $>$ SHOW ALL< to display all file types	
Press arrow key at the VDU to switch the soft-key	
row to the file type display	
Soft key $>$ SHOW. $<$ to display the tool tables	
Press arrow key to switch back the soft-key row	

15.4.2 Machine Parameter Input

Press Koy	Function
MOD	Switch TNC to operating mode EDITING (key on VDU) Prepare TNC for parameter input Enter code number. acknowledge with ENT Activate data transfer menu Press arrow key to enter the directory of the external data medium If necessary: select desired MP file by pressing the arrow keys Enter name of MP file (ASCII or numerical keys) Soft key >TRANSFER TNC $\leftarrow E X T<$ for data input Soft key $>$ END $<$ to end data transfer menu TNC is in the operating mode EDITING

If the error message OPERATING PARAMETERS ERASED
is displayed, reenter the machine parameters as follows:

| 'ress Key | Function
 Clear error message
 OPERATING PARAMETERS ERASED
 Activate data transfer menu |
| :--- | :--- | :--- |
| Soft key $>$ TRANSFER TNC $\leftarrow E X T<$ to download data | |
| Soft key $>$ END $<$ to end data transfer menu | |

Note:

With new software versions, new machine parameters may be available. If these machine parameters are not comprised in the machine parameter list when downloading, they are set to the value 0 . The correct input values for these machine parameters must be entered subsequently.

15.4.3 Machine Parameter Input for Multipoint Axis Error Compensation

Press Key	Function
Switch TNC to operating mode EDITING	
(key on VDU)	
Prepare TNC for code number input	

15.4.4 Downloading the PLC Program: Error Messages and Dialogs

The error messages and the dialogs are read in as ASCII files. They need then to be reconverted into the original file types (see section 15.3.5)

Iress Key	Function Switch TNC to operating mode EDITING (key on VDU) Prepare TNC for code number input
Enter code number, acknowledge with ENT	
Activate data transfer menu	
Press arrow key to enter the directory of the external	
data medium	

Sress Key	Function Press arrow key to select ASCII file to be deleted Soft key $>$ DELETE $<$ to delete ASCII file Delete further ASCII files, if required Soft key $>E N D<$ to end data transfer menu Press arrow key at the VDU to switch the soft-key row to the requested file extension Soft key $>$.xxx FILES< to display requested file extension Press arrow key to switch back to data transfer menu Enter original file name (ASCII and numerical keys) Soft key $>$ TRANSFER ... $<$ to transfer data Soft key $>E N D<$ to end data transfer menu Soft key $>C O M P I L E<$ to compile PLC program
If required, press arrow key to select PLC program	
Soft key $>$ SELECT< to select PLC program	
Soft key $>E N D<$ to end the PLC editor and switch the	
TNC back to the operating mode EDITING	

16. Analog Outputs

16.1 Specifications

6 outputs:	1, 2, 3, 4, 5, and S	Machine Parameter	the	alog Outputs
		Analog Output	MP	Entry Value
Load capacity:	$\mathrm{R}_{1} \operatorname{mint} 5 \mathrm{k} \Omega$	X	120.0	= output 1
	$\mathrm{C}_{1} \mathrm{max} \leq 2 \mathrm{nF}$	Y	120.	= output 2
		Z	120.2	$2=$ output 3
Voltage range:	$\mathrm{U}_{\text {a }} \mathrm{max}= \pm 10 \mathrm{~V} \pm 100 \mathrm{mV}$	IV	120.3	$3=$ output 4
	U a $\mathrm{min}=0 \mathrm{~V} \pm 3 \mathrm{mV}$	V	120.4	= output 5
	TNC 407	TNC 415		
Resolution	14 bits $=16384$ steps	16 bits $=65536$ steps		
Smallest step	$\frac{10 \mathrm{~V}}{16384}=0.610 \mathrm{mV}$	$\frac{10 \mathrm{~V}}{65536}=0.153 \mathrm{mV}$		

16.2 Checking the Analog Outputs

Proportionally to the traversing speed, the control generates an analog voltage of $\mathbf{O V}$ (axis standstill) to $\mathbf{9 V}$ (rapid traverse). The easiest way to determine this voltage is to connect the test adaptor directly to the logic unit or to the connecting terminals of the servo-amplifier and to measure with a multimeter.

If however, the axis does not move due to a defect, and you want to test whether the error is inside or outside the control, the following steps are recommended:
Switch off the main switch of the machine tool.
Connect the test adaptor to the connector X8 (nom. value output) of the LE and connect a multimeter to the test adaptor sockets for the defective axis If no test adaptor is available, connect a multimeter directly to the nominal value output of the servo-amplifier.
Switch on the main switch and the control voltage.
Switch the position display to LAG (servo lag) (see sec. 16.3).
Check or adjust the following machine parameters. (If you alter the machine parameters, note down the original values and enter them again after finishing the test.)

MP	Entry Value	Function	Original Value
$\mathbf{1 7 2 0}$	$100[\mathrm{~mm}]$	Servo-lag monitoring EMERGENCY STOP	
1140	9.99 rVI	Movement monitoring	

Traverse the reference points that need to be traversed before those of the defective axis.
Turn the override potentiometer of the keyboard unit completely to the left and start reference point traverse for the defective axis.
Check the axis enable for the defective axis at the servo amplifier.
Check the screen display

* (control ready for operation) must be switched on, the "F" of the feed display must be lit normally (if the display is inverse, the feed enable is missing), and the symbol for "Axis not in the Position Loop" (e.g. $\rightarrow \downharpoonright \leftarrow$) should not follow the position display.
- Turn the override potentiometer slowly to the right and turn it back left before the servo lag display reaches the limit of the position monitoring (MP1720).

When the override potentiometer is turned to the right, the control outputs an analog voltage which is increased proportionally to the servo lag up to 10 V max. The control is operating correctly if a voltage of $10 \mathrm{~V} \pm 0.1 \mathrm{~V}$ can be measured at the test adaptor with the multimeter. If no voltage can be measured, switch off the main switch, disconnect the nominal value line from the servo amplifier and test for short-circuit. If the nominal value line is in order, connect the connector X 8 to the LE again (leave the nominal value line disconnected), switch on the main switch and repeat the measurement with reference mark traverse. If an analog voltage can be measured now, the control is operating correctly. If no voltage can be measured, the analog output of the LE is probably defective.

15.2.1 Checking the Analog Outputs: Measurement Setup

X8 Nominal Value Output 1, 2, 3, 4, 5, S
Flange socket with female insert (15-pin)

Pin No.	Signal Designation
1	analog output 1
3	analog output 2
5	analog output 3
7	analog output 4
4	analog output 5
8	analog output S-axis
9	OV analog output 1

Pin No.	Signal Designation
11	OV analog output 2
13	OV analog output 3
14	OV analog output 4
6	OV analog output 5
15	OV analog output S-axis
housing	external shield = housing
$2,10,12$	do not assign

16.3 Switching Over the Position Display

Press Key	Function
	Switch TNC to operating mode MACHINE
Prepare TNC to be switched over to position display	
Press ENT to switch to desired position display	
(DIST, ACTL, REF. LAG, NOML)	Press soft key $>$ END $<$ to switch the TNC to the operating mode EDITING

16.4 Feed Adjustment

Check/adjust the machine parameters. (Note down the original values before changing.)

MP	Entry Value	Function	Original Value
1390	0	Feed precontrol ON in the automatic operating modes	
7290	0	Display step $=1 \mu \mathrm{~m}$	

Switch the position display to LAG (display of servo lag).
Enter the following test program:

```
e.g. 1 LBL 1
        3\times0 R F M
        4 \text { CALL LBL } 1 \text { REP } 1 0
```

 \(2 \times 100\) RO F29999 M (select a larger traverse range if possible)
 Run the test program in the operating mode PROGRAM RUN/FULL SEQUENCE.
Adjust the feed at the servo amplifier (tachometer) until the servo lag display is approx. zero for positioning in both directions.

Repeat adjustment for all axes.
Reset the machine parameters and the position display to the original values.

16．5 Offset Adjustment

16．5．1 Offset Adjustment with Code Number

The offset adiustment with code number only compensates the current offset．Subsequent offset modifications are not compensated．

Press Key		Function

The offset values are displayed individually for each axis in converter increments

（TNC 407：	1 converter increment $=0.61 \mathrm{mV}$ ，
TNC 415：	1 converter increment $=0.153 \mathrm{mV}$ ）

16．52 Automatic Cyclic Offset Adjustment

In the machine parameter MP1220，the cycle time is determined［unit s］after which an offset is compensated by one converter increment．To switch off the automatic offset adjustment，enter the value 0 in the machine parameter MP1220．

NOTE：

If an offset voltage of 100 mV is reached with automatic offset adjustment，the control switches itself off，generating the error message＂GROSS POSITIONING ERROR＜Axis＞＜CPU Number＞E＂．

16.5.3 Offset Adjustment at the Servo-Amplifier

Check/adjust the following machine parameters. (Note down the original values before changing.)

MP	Entry Value	Function	Original Value
1080.0	0		
1080.1	0		
1080.2	0	Integral factor	
1080.3	0	Cycle time for automatic offset adjustment	
1220	0	Feed precontrol ON in the automatic operating modes	
1390	0		
1510.0	$>=1$		
1510.1	$>=1$		
1510.2	$>=1$		
1510.3	$>=1$	KV factor for feed precontrol	
7290	0	Display step $=1$ pm	

Switch position display to LAG (display of servo lag) (see sec. 16.3).
Clear the offset memory with the code number 75368 (see sec. 16.5.1).
Adjust the offset at the servo-amplifier until the values of the individual axes are zero or oscillate symmetrically about zero.
". Reset the machine parameter values and the position display to their original values.

17. PLC Inputs and Outputs

17.1 Specifications

17.1.1 PLC Inputs at the Logic Unit

10	to 131	at X42
1128	to 1152	atX46

"0"-Signal $\quad U_{e}=-20 \mathrm{~V}$ to 3.2 V
$l_{e}=1.0 \mathrm{~mA}$ with $\mathrm{U}_{\mathrm{e}}=3.2 \mathrm{~V}$
" $]$ "-Signal $\quad U_{e}=13 \mathrm{v}$ to 30.2 v
$l_{e}=3.8 \mathrm{~mA}$ to 8.9 mA
Pin layout: see section 5.1.7

17.12 PLC Outputs at the Logic Unit

00 to 07 at X 46
00 to 030 and "Control Ready for Operation" at X41
"1"-Signal Uamin $=U_{B}-3 \mathrm{~V}$
laNOM $=0.1 \mathrm{~A}$
Pin layout: see section 5.1.7

17.1.3 PLC Inputs at the PL 400

I64 to 1126 at $x 4$ to $x 9$
"0"-Signal $\quad U_{e}=-20 \mathrm{~V}$ to 4 V
$l_{e}=1.6 \mathrm{~mA}$ with $U_{e}=4 \mathrm{~V}$
"1"-Signal $\quad U_{e}=16.5 \mathrm{~V}$ to 30 V
$l_{e}=6.2 \mathrm{~mA}$ to 12.6 mA

17.1.4 PLC Outputs at the PL 400

032 to 062 and "Control Ready for Operation" at X 1 to X 3
" ${ }^{\prime \prime}$ 'Signal $\quad \begin{aligned} & \text { Uamin }=U_{B}-3 \mathrm{~V} \\ & \\ & \quad l_{a} N O M=1.2 \mathrm{~A}\end{aligned}$
Pin layout: see section 5.2.2

17.2 Checking the PLC Inputs and Outputs

Two test units are available to check the inputs and outputs of the PLC:

$$
\begin{array}{ll}
\text { PLC Test Unit } & \text { for X41, X42 and X46 } \\
\text { PL Test Adaptor } & \text { for the PL board }
\end{array}
$$

With the PLC Test Unit all inputs and outputs of a connector are displayed simultaneously and all voltages can be measured. If you use the PL Test Adaptor, only the inputs/outputs of one terminal strip of the PL board are displayed. In this case the voltages can be measured directly at the terminals.

17.2.1 PLC Inputs

Check the PLC inputs as follows:
Connect the test unit between LE and PLC or between LE and PL.
Set the TNC as follows:

| Press key | | Function |
| :--- | :--- | :--- | :--- |
| | | Switch TNC to operating mode EDITING
 (key on VDU
 Prepare TNC for code number input |

Now the logic states of the inputs are displayed on the screen. The states of the screen display must correspond to those of the test unit. If there is a difference, measure the voltage level (see section 17.1) of this input at the test unit. If the input voltage is correct, the input board is probably defective (10 to 131 and 1128 to 1152 of PLC and graphics board, 164 to 11 '26 of PLC I/O board).

	Soft key $>$ END $<$ to exit table display Soft key $>$ END $<$ to switch TNC back to operating mode EDITING

NOTE:

003
Always switch off the main switch before engaging or disengaging any connector.

17.2.2 PLC Outputs

Check the PLC outputs as follows:
Connect the test unit between LE and PLC or between LE and PL.
Set the TNC as follows:

Press key		Function
		Switch TNC to operating mode EDITING (key on VDU) Prepare TNC for code number input

Now the logic states of the outputs are displayed on the screen. The states of the screen display must correspond to those of the test unit. If there is a difference, test the connecting cable for short circuit and measure the output current at interface (max. 100 mA for LE outputs, max. 1.2 A for PL outputs). If the output current is not exceeded and the connecting cable is in order, the output board is probably defective (00 to 030 of processor board, 032 to 062 of I/O board PL 400).

	Soft key $>$ END $<$ to exit table display Soft key $>E N D<$ to switch TNC back to operating mode EDITING

NOTE:
Always switch off the main switch before engaging or disengaging any connector.

17.2.3 Measurement Setup for PLC Inputs and Outputs

17.3 Further Diagnosis Possibilities in the PLC Mode

The TRACE function provides the possibility of controlling the logic states of the markers, the inputs and outputs, of the timer and the counter. It also serves to check the contents of bytes. words and double words.

Call the TRACE function from the PLC main menu with the soft key TRACE.

An instruction list (AWL) of the compiled program (process program) is displayed. In addition, the contents of the operand and of the accumulator is displayed in HEX code or decimal code. All active commands of the instruction list are marked by *. Use the cursor keys or the GOT0 function to display the requested program part.

The following soft-key row is displayed:
$\left[\begin{array}{c|c|c|c|c|c|c|c|}\hline \begin{array}{c}\text { SELECT } \\ M / / / O / T / C\end{array} & \begin{array}{c}\text { LOGIC } \\ \text { DIAGRAM }\end{array} & \begin{array}{c}\text { HEX } \\ \downarrow \uparrow \\ \text { DECIMAL }\end{array} & \begin{array}{c}\text { START } \\ \text { DISPLAY }\end{array} & \begin{array}{c}\text { STOP } \\ \text { DISPLAY }\end{array} & \begin{array}{c}\text { START } \\ \text { TRACE }\end{array} & \begin{array}{c}\text { STOP } \\ \text { TRACE }\end{array} & \text { END } \\ \hline\end{array}\right.$

Explanation of the soft keys:

SELECT
 M/l/O/T/C

see section 17.3.2

```
LOGIC
DIAGRAM
```

see section 17.3.2

START

Dynamic display of operands and accumulators stopped

END Exit to PLC main menu

17.3.2 Logic Diagram

Function:

The logic states of up to 16 operands ($\mathrm{M}, \mathrm{I}, 0, \mathrm{~T}, \mathrm{C}$) can be displayed graphically on the screen at the same time. 1024 PLC scans can be traced.

Press Key	Function
	Soft key $>$ SELECT $M / / / O / T / \mathrm{C}<$

A table is displayed from which the desired operands can be selected. The control requests the positions of the table in a dialog. Wrong inputs can be cleared by pressing DEL. It is possible to enter a trigger condition for each operand. 512 states are traced before and after a trigger event. The following trigger conditions are possible:

```
"1" }->\mathrm{ trace if the operand is a logical "1"
    (trigger on positive edge)
"0" }->\mathrm{ trace if the operand is a logical "0"
    (trigger on negative edge)
    no trigger
        If no trigger condition is entered for any of the operands,
        the operand states are traced continuously and the last
        1024 states are stored.
```

 e.g. \(\quad 0 \quad 15 \quad 1 \quad \rightarrow\) trigger on positive edge
 \(106 \quad \rightarrow\) trigger on negative edge
 \(2 \quad \mathrm{M} 7 \quad \rightarrow\) no trigger
 | | Soft key $>$ START TRACE $<$
 Switch TNC to the operating mode MACHINE
 (key on VDU) |
| :--- | :--- |

The trace function is started with START TRACE; END TRACE or a trigger event end the tracing
PCTR blinking: trigger condition has not occurred yet
PCTR on: trigger condition has occurred; write access to buffer memory
PCTR off:
buffer memory is full. logic diagram can be called.

17.4 Output Control Ready for Operation and Acknowledgement for Test Control Ready for Operation

Important functions are monitored by the TNC $407 / 415$ by way of a self-diagnosis system (electronic assemblies such as the micro-processor, the ROM, read/write memory, positioning systems, encoders etc.)

If an error is detected, a blinking error message is displayed in plain language in the dialog line. As soon as this error is displayed, the output "Control Ready for Operation" becomes inactive.

The output "Control Ready for Operation" is available via the connectors $X 41 / X 43$ of the LE and on the terminal X3 /pin 10 of the I/O board PL 400. If the error cause has been eliminated, this state can be cancelled by switching off the main switch or pressing

The output "Control Ready for Operation" is to switch off the control voltage of +24 V in the machine tool interface. Since this is an important safety function, the switch-off function of the output "Control Ready for Operation" is tested via the input "Acknowledgement Control Ready for Operation" every time the control is switched on.

The TNC 407 features a monitoring function that is tested when the machine tool is switched on. The TNC 415 comprises 3 monitoring systems (main processor, geometry processor and CLP processor) that are also tested when the machine tool is switched on.

If the +24 V at the input "Acknowledgement Control Ready for Operation" are missing during the test routine when the control is switched on, the error message "RELAY EXT. DC VOLTAGE MISSING" is generated. If however, the acknowledgement is switched off too late (or not switched off at all) after switch-off of the output, the blinking error message "EMERGENCY STOP DEFECTIVE" is displayed. This error message is also generated, if the power supply of the PLC part is missing (power supply of the PLC part: see section 8.6).

If the control detects an error during the switch-on test routine, a bridge can be inserted between the outputs "Control Ready for Operation" and "Acknowledge Control Ready for Operation" (disconnect the wires) in order to determine whether the defect is due to the control or to the interface. If the error is still present after inserting the bridge and with correct power supply of the PLC part, the defect is located in the logic unit. If however, the error does not occur any longer after the bridge has been inserted, the interface is defective.

Note:

Do not forget to remove the bridge and to install the standard operating state after the test

17.4.1 Wiring of the EMERGENCY STOP Interface (Basic Circuit Diagram)

17.4.2 EMERGENCY STOP Flow Diagram: TNC 407

17.4.3 Flow Diagram: TNC 415

Time	Remarks	Error Message
1		POWER INTERRUPTED
$\mathbf{2}$	Waiting for control voltage	RELAY EXT. DC VOLTAGE MISSING
$\mathbf{3}$	After switching off the output "Control Ready for Operation", the "Acknowledgement Control	Ready for Operation" must be switched off within 146 ms; otherwise a blinking error message is generated.
4	EMERGENCY STOP DEFECTIVE	
	If the acknowledgement is switched off during operation, the error message is displayed.	$11=$ Communication processor $1 .=$ CLP processocessor

18. Test Units

18.1 Test Load Unit for the Power Supply Assembly

Used:

to test the power supply assembly

Connector no longer required Test load unit is being redesigned

18.2 Test Unit for the PLC Inputs and Outputs

PL Test Unit, Id. No. 24735901 to test the PLC inputs and outputs at the PL

PLC Test Unit, Id.No. 24736101 to test the PLC inputs and outputs at the LE

18.3 Measuring Adaptor - Id.No. 25548001

Used: to test the keyboard unit (see section 9.3) as a universal test unit for D-sub connectors (9-pin to 37-pin)

The measuring adaptor can be used to test the inputs and outputs of D-sub connectors (9-pin to 37-pin). On the following page the adaptor cables required for each connector size are described.

The measuring adaptor can also be used instead of the PLC test unit described on page 86 (without display)

Adaptor Cable, 37pin Id.No. 25548401

18.4 Encoder Diagnostic Set, Id.No. 25459902

Used:

- to test the electrical functions of an encoder
(further information please see from the operating instructions of the Diagnostic Set)

19. Exchange Instructions

19.1 General Remarks

19.1.1 Equipment Required

Iexternal data medium, e.g. FE 401/B or personal computer with connecting cable
1 tool set (screwdriver, socket wrench etc.)
1 MOS protection device (only required for exchanging boards or EPROMs)

19.12 MOS Protection

If the processor board, the PLC and graphics board, the CLP boards or EPROMs are to be exchanged, a MOS protection is definitely required, as otherwise MOS components on the boards or EPROMs may be destroyed.

Note:

$003)$
Avoid any unprotected handling or contact of the boards or EPROMs with statically charged objects (packaging material, storage etc.).

MOS Protection

19.1.3 Software Compatibility

Exchange units (complete logic unit) are generally supplied with the latest software version. Exchange boards however, are always supplied without software and without software protection module.
For this reason, the EPROMs and the software enable module of the defective board must be inserted into the exchange board at site (see sec. 19.9). Before sending us exchange boards for repair, always remove the EPROMs and the software enable module.

19.1.4 Backing up RAM Data

Before the complete logic unit or the processor board is exchanged all files in the RAM must be backed up on at- external data medium.

The machine parameters and the part programs are always processed from the RAM and must be stored on an external data medium.

In the machine parameter MP7224 individual file types can be enabled:
e.g. tool tables, datum tables, pallet tables, ASCII files.

If all files or individual files are enabled, they need to be stored on an external data medium.
If the value of the machine parameter MP4010 is 1 , the PLC program parts are processed from the RAM and must be backed up.
If the machine parameter MP730 is not 0 , the multipoint axis error compensation is active for one or several axes. In this case, the compensation value list must be backed up as well.

Note:

For reasons of safety, the machine parameters, the compensation value list (if active) and the PLC program (if MP4010 = 1) should always be backed up on an external data medium. The procedure for data backup is described in section 15.3. Data backup is not required, if the data are already stored on an external data medium.

19.1.5 Determining Data for the Auxiliary Operating Modes:

If the processor board assembly or the complete logic unit are to be exchanged, or if a software exchange is to be carried out, the preset values and the current entry values of the auxiliary operating modes should be determined, so that they can be re-entered after the exchange.

Switch off and on the main switch of the machine tool

19.1.6 Labelling the Connecting Cables

If the connecting cables are labelled incompletely or not at all, they have to be marked such that the correct plug connections can be re-established after the exchange of the logic unit or of another assembly. (Pin layout: see section 5)

WARNING:

Switching the connecting cables may destroy the unit

19.2 Exchanging the Logic Unit

192.1 Data Backup and Labelling of the Cables

(see section 19.1)

19.2.2 Dismounting the Logic Unit

a) Switch off the main switch
b) Loosen all plug connectors and clamped joints at the logic unit (pin layout: see section 5)

c) Loosen the 4 mounting screws on the logic unit

d) Remove the old logic unit and insert the new one.

19.23 Mounting of the Logic Unit

The logic unit is mounted in the reverse order that is was dismounted:
a) Insert the logic unit and secure it.
b) Engage connectors.

Observe that no connectors are switched!

c) Switch on the main switch.
d) Read in the machine tool data that have been backed up before the exchange (machine parameters, PLC program, NC programs and tables).
e) Enter preset values and supplementary operating modes from the table in section 19.1.5 (before ref. mark traverse).
f) Offset adjustment with code number (see section 16.5).

Exchange is now finished

19.3 Exchanging the TNC 415 Processor Board

19.3.1 MOS-Protection, Software, Data Backup and Labelling of the Cables (see section 19.1)

19.3.2 Dismounting the Processor Board

a) Switch off the main switch at the machine tool.
b) Loosen the connectors at the processor board (X21, X22, X231. (Pin layout: see section 5)
c) Undo the lock and open the logic unit.

Processor board TNC 415
d) Disengage internal connectors

e) Loosen/remove the fixing screws

f) Lift out the processor board; exchange the EPROMs, if required (see section 19.9). Insert the new board.

19.3.3 Mounting the Processor Board

The processor board is mounted in the reverse order that is was dismounted
a) Insert and secure the processor board.
b) Engage the connectors.

Observe that no connectors are switched!

c) Close the logic unit and close the lock.
d) Switch on the main switch.
e) Read in the machine tool data that have been backed up before the exchange (machine parameters, PLC program, NC programs and tables).
f) Enter preset values and supplementary operating modes from the tables in section 19.1.5 (before ref. mark traverse).
g) Offset adjustment with code number (see section 16.5).

Exchange is now finished

(40)

NOTE:
Send and store the boards only in the original packaging that protects them from acquiring static charge. Never use conventional plastics to wrap the boards in.

19.4 Exchanging the TNC 415 CLP Board

19.4.1 MOS-Protection, Software, Data Backup and Labelling of the Cables (see section 19.1)

19.4.2 Dismounting the CLP Board

a) Switch off the main switch at the machine tool.
b) Loosen the connectors at the CLP board (X1-X6, X8, X10, X12).
(Pin layout: see section 5.1
c) Undo the lock and open the logic unit

CLP board TNC 415
d) Disengage internal connectors

e) Loosen/remove the fixing screws

f) Lift out the CLP board: exchange the EPROMs, if required (see section 19.9). Insert the new board.

19.4.3 Mounting the CLP Board

The CL'? board is mounted in the reverse order that is was dismounted.
a) Insert and secure the CLP board,
b) Engage the connectors.

Observe that no connectors are switched!

c) Close the logic unit and close the lock.
d) Switch on the main switch.
e) Offset adjustment with code number (see section 16.5)

Exchange is now finished

NOTE:
(000)

Send and store the boards only in the original packaging that protects them from acquiring static charge. Never use conventional plastics to wrap the boards in.

19.5 Exchanging the PLC and Graphics Board of TNC407/415

19.5.1 MOS-Protection and Labelling of the Cables
 (see section 19.1)

19.5.2 Dismounting the PLC and Graphics Board

a) Switch off the main switch at the machine tool.
b) Loosen the connectors at the PLC and graphics board (X41 - X47) (Pin layout: see section 5)
c) LE 407: Undo lock and open logic unit LE 415: Remove knurled screws

PLC and graphics board
d) Disengage internal connectors

Kundendienst

e) Loosen/remove the fixing screws

f) Lift out the PLC and graphics board. Insert the new board.

19.5.3 Mounting the PLC and Graphics Board

The PLC and graphics board is mounted in the reverse order that is was dismounted,
a) Insert and secure the CLP board.
b) Engage the connectors.

Observe that no connectors are switched!

c) Close the logic unit and close the lock.
d) Switch on the main switch.
e) Offset adjustment with code number (see section 16.5).

Exchange is now finished.

NOTE:
Send and store the boards only in the original packaging that protects them from acquiring static charge. Never use conventional plastics to wrap the boards in.

19.6 Exchanging the TNC 407 Processor Board

19.6.1 MO\&Protection, Software, Data Backup and Labelling of the Cables

(see section 19.1)

19.6.2 Dismounting the Processor Board

a) Switch off the main switch at the machine tool.
b) Loosen the connectors at the processor board (X1 to X6, X12 x21 to X23).
(Pin layout: see section 51
c) Undo the lock and open the logic unit.

Processor board TNC 407
d) Disengage internal connectors

e) Loosen/remove the fixing screws

f) Lift out the processor board; exchange the EPROMs, if required (see section 19.9) Insert the new board.

19.6.3 Mounting the Processor Board

The processor board is mounted in the reverse order that is was dismounted.
a) Insert and secure the processor board
b) Engage the connectors.

Observe that no connectors are switched!

c) Close the logic unit and close the lock.
d) Switch on the main switch.
e) Read in the machine tool data that have been backed up before the exchange (machine parameters, PLC program, NC programs and tables).
f) Enter preset values and supplementary operating modes from the tables in section 19.1.5 (before ref. mark traverse).
g) Offset adjustment with code number (see section 16.5).

Exchange is now finished

NOTE:

Send and store the boards only in the original packaging that protects them from acquiring static charge. Never use conventional plastics to wrap the boards in.

DR._IOHANNES .HEIDENHAIN. GmbH
D-83292 Traunreut • (08669) 31-0

19.7 Exchanging the Power Supply Assembly of TNC $407 / 415$

a) Switch off the main switch at the machine tool.
b) Undo the locks and open the logic unit.

d) Disengage internal connectors

Press spring lock to open ii

Disconnect the NC power supply

d) Loosen the mounting screws

Slide out the power supply unit to the right and insert the new power supply unit

e) Fasten the mounting screws, engage internal connectors

Observe that no connectors are switched!

f) Close the logic unit, switch on the main switch.

NOTE:
Send and store the boards only in the original packaging that protects them trom acquiring
static charge. Never use conventional plastics to wrap the boards in.

19.8 Exchanging the PLC I/O Board PL 400

a) Switch off the main switch.
b) Loosen the plug connections and the screw terminals at the PLC I/O board

c) Loosen the screws from the cover of the PLC I/O board, remove cover and disconnect the connecting cable to the PLC board from the PLC I/O board.

d) Loosen the screws and remove the PLC I/O board

e) The new PLC I/O board is mounted in reverse order:
. Mount the PLC I/O board to the logic unit.
-Connect the PLC I/O board to the processor board.
Engage the connectors.
-Switch on the main switch.
Exchange is now finished,

NOTE:

Send and store the boards only in the original packaging that protects them from acquiring static charge. Never use conventional plastics to wrap the boards in.

19.9 Exchanging EPROMs

19.9.1 MOS Protection

For the exchange of EPROMs MOS-protection is indispensable, as otherwise the EPROMs could be destroyed by static charge. Moreover, all data should be backed up (see section 15.1).
Observe the mark on the EPROMs (do not turn them by 180"); be sure not to damage any components during the exchange. Use an appropriate tool. After the software exchange, the logic unit must be marked with the new NC-software number (see section 14.1). The offset adjustment with code number should be performed as well (see section 16.5).
e.g. IC drawing punch and insertion tool

19.9.1 EPROM Designation

Processor Board TNC 415

CLP Board TNC 415

Processor Board TNC 407

20. Machine Parameters

The following list contains the machine parameters for all software versions. However, as some machine parameters are not valid for certain controls or have been introduced /eliminated with a certain software version, columns with symbols for differentiation have been added after the parameter numbers.

Explanation of the Symbols

- With this control, the machine parameter is valid for all software versions.

04 The machine parameter has been introduced with a certain software version (e.g. 04 means introduction with software version 04).

104The machine parameter has been eliminated starting with a certain software version
(e.g. 04 means elimination as of software version 04). or it has been replaced by anothel parameter.

This machine parameter is not available on this control.

* The machine parameter is accessible via the code number 1 '23.

Explanation of the Columns

407 AS Old software 24307.
415AS Old software $24305 ., 25991$.
407 NS New software 24302.
415 NS New software 259 96.. 25997.

Structure

The machine parameters are subdivided into groups.
Due to the structure of the parameter numbers, the list can be expanded easily.

0999 Encoders and machine tool axes: allocation, evaluation, compensation
$1 \emptyset \emptyset \emptyset$ Positioning

1400 Operation with feed precontrol
1700 Operation with servo lag
3000 Spindle control
4000 Integrated PLC
5000 Adaptation of the data interface
6000 Measurement with 3D-touch probe system
7100 Tapping
7200 Display and programming
7320 Colour allocation for colour screens
7330 User parameters
7400 Processing and program run
7600 Hardware

Machine Parameter LIST

(Excerpt from the Repair Handbook 1.0 TNC 4071415, section 10.2)

Code Numbers

123 MACHINE PARAMETER EDITING FOR END USERS (marked by *)

75368
79513
86357
95148
105296
531210
620159
807667
688379

OFFSET ADJUSTMENT
DISPLAY OF VOLTAGE AND TEMPERATURE
REMOVE EDIT/ERASE PROTECTION
MP MODE
COMPENSATION VALUE LIST
RESETTING M 1000 TO M 2000 AND BYTES 0-127
DOWNLOADING RUN-IN PROGRAM VIA INTERFACE
PLC MODE
INTERNAL OSCILLOSCOPE

Machine Parameters

The following list contains the machine parameters of all software versions
Since, however, certain machine parameters are only valid for a certain software version or from a certain version on, the list contains columns with symbols for differentiation.

Explanation of the Symbols:

- = This machine parameter or entry value is valid for all software versions of this control model.

04 = This machine parameter has been introduced with a certain software version
(e.g. 04 means that the MP has been introduced with the software version 04).
$104=$ This machine parameter is inactive.

- $\quad=$ This machine parameter is not available with this control model.

Explanation of the Columns:

A = TNC 407 with NC software 243 07* -- (without digitizing)
B = TNC 415 with NC software 24305^{*}-- and 25991^{*}-- (without digitizing)
C = TNC 407 with NC software 24302^{*}-- (with digitizing)
D = TNC 415 with NC software 25996^{*}-- and 25997^{*}-- (with digitizing)
E = TNC 407 with NC software 24303^{*}--(equivalent to TNC 415B/425 software)
F = TNC 415 with NC software 28058^{*}-- (special software)
AE-6 = entry values for HEIDENHAIN test unit

User Parameters

By means of the MOD function "User Parameters" several machine parameters can be accessed easily (e.g. adaptation of the data interface). This user parameters accessible via MOD function are defined by the machine tool manufacturer through machine parameters.

Entry Values

Possible entry values are:

- The numbers 0 and 1 to select functions, signs, counting directions etc.
- Numerical values for feed rates, displacements etc.
- Decimal values that can be calculated by combining several functions (bit-coded).
i.e. $\quad X, Y, Z$ with encoder (1)7200
- Hexadecimal values (marked by \$), as of TNC407 with NC software 234 03* -e.g. MP 7353.0: \$ 0F818A0

Structure

The machine parameters are subdivided into groups
The machine parameter number are structured such that the list can be expanded easily.

Encoders and machine axes: allocation, evaluation, compensation Positioning

Operation with feed forward control
Operation with servo lag
Spindle
Integral PLC
Adaptation of the data interface
3D-touch probe (general parameters)
Digitizing with 3D-touch probe
Tool calibration with TT 110
Tapping
Display and Programming
Colors, general display and FK graphics
USER parameters
Colors, general display and FK graphics
Machining and program run
Hardware

Function		MP		A				D	E	F	Input	AE-6 Entry Value
		No.	Bit					A \mathbf{B} C ${ }^{\text {C }}$				
Axes with encoder		10		-	-		-	-	-	-	$0=$ no encoder	
	X		0								+1 = X axis with encoder	\% 11111
	Y		1								$+2=\mathrm{Y}$ axis with encoder	(31)
	Z		2								$+4=\mathrm{Z}$ axis with encoder	
	IV		3								$+8=\mathrm{IV}$. axis with encoder	
	V		4								$+16=\mathrm{V}$. axis with encoder	
Encoder monitoring Absolute position with distance-coded reference marks		30		-	-		-	-	-	-	$0=$ no axis monitored	
	X		0								$+1=X$ axis monitored	\% 111111
	Y		1								$+2=Y$ axis monitored	(63)
	Z		2								+4 = Z axis monitored	
	IV		3								$+8=\mathrm{V}$. axis monitored	
	V		4								$+16=\mathrm{V}$. axis monitored	
	S		5								$+32=$ S axis monitored	
Signal amplitude		31		-	-		-	-	-	-	$0=$ no axis monitored	
	X		0								$+1=X$ axis monitored	\% 111111
	Y		1								$+2=Y$ axis monitored	(63)
	Z		2								$+4=\mathrm{Z}$ axis monitored	
	IV		3								$+8=\mathrm{V}$. axis monitored	
	V		4								$+16=\mathrm{V}$. axis monitored	
	S		5								+32 $=$ S axis monitored	
Edge separation		32		-	-		-	-	-	-	$0=$ no axis monitored	
	X		0								+1 $=\mathrm{X}$ axis monitored	\% 111111
	Y		1								$+2=Y$ axis monitored	(63)
	Z		2								$+4=\mathrm{Z}$ axis monitored	
	IV		3								$+8=\mathrm{IV}$. axis monitored	
	V		4								$+16=V$. axis monitored	
	S		5								+32 $=$ S axis monitored	

[^7]
${ }^{1)}$ S-analogue may only be used for a machine axes, if no analogue output of the spindle speed is required.

Function		MP		A	B	C	D	E	F	Input		AE-6 Entry Value
		No.	Bit									
EXE interpolation factor at encoder input	X	340.0		-	-	03	-	-	-	$\begin{aligned} & 0,1,5 \\ & 0=\quad \text { no EXE } \end{aligned}$		0
	Y	340.1		-	-	03	-	-	-	1 = 1-fold EXE		0
	Z	340.2		-	-	03	-	-	-	$5=5$-fold EXE		0
	IV	340.3		-	-	03	-	-	-			0
	V	340.4		-	-		-	-	-			0
Axis designation												
	VI	410.3		-	-	-	-	-	-	$0=\mathrm{A} \quad 1=\mathrm{B}$	$2=C$	4
	V	410.4		-	-	-	-	-	-	$3=U \quad 4=V$	$5=W$	5
Hirth coupling												
Activation	VI	420.3		-	-	-	-	-	-	$0=$ inactive		0
	V	420.4		-	-	-	-	-	-	1 = active		0
Defined steps												
	VI	430.3		-	-	-	-	-	-	0 to $30.0000\left[{ }^{\circ}\right]$		1
	V	430.4		-	-	-	-	-	-			1

Function				A	B	C	D	E	F	Input	AE-6
		No.	Bit								Entry Value
Axis compensations: Backlash compensation	X	710.0		-	-	-	-	-	-	-1.0000 to +1.0000 [mm]	0
	Y	710.1		-	-	-	-	-	-		0
	Z	710.2		-	-	-	-	-	-		0
	IV	710.3		-	-	-	-	-	-		0
	V	710.4				-					0
Compensation of reversal spikes with circular movements - magnitude of reversal spike	X	711.0		-	-	-	-	-	-	0 to 1 [mm]	0
	Y	711.1		-	-	-	-	-	-		0
	Z	711.2		-	-	-	-	-	-		0
	IV	711.3		-	-	-	-	-	-		0
	V	711.4		-	-	-	-	-	-		0
- feed rate to compensate the reversal spike	X	712.0		-	-	-	-	-	-	0 to 1 [mm per CLP cycle time]	0
	Y	712.1		-	-	-	-	-	-		0
	Z	712.2		-	-	-	-	-	-		0
	IV	712.3		-	-	-	-	-	-		0
	V	712.4		-	-	-	-	-	-		0
- magnitude of reversal spike (only effective with M05)	X	715.0		-	-	-	-			0 to 1 [mm]	
	Y	715.1		-	-	-	-	08	-		0
	Z	715.2		-	-	-	-	08	-		0
	IV	715.3		-	-	-	-	08	-		0
	V	715.4		-	-	-	-	08	-		
- feed rate to compensate the reversal spike (only effective with M05)	X	716.0		-	-	-	-	08		0 to 1 [mm per CLP cycle time]	0
	Y	716.1		-	-	-	-	08	-		0
	Z	716.2		-	-	-	-	08	-		0
	IV	716.3		-	-	-	-	08	*		0
	V	716.4			-	-		08	-		

Function		MP		A	B	C	D	E	F	Input	AE-6
		No.	Bit								Entry Value
Factor for multipoint axis error compensation	X			-	-	-	-	-	-	-1.0000 to +1.0000 [mm]	0
	Y	720.1		-	-	-	-	-	-		0
	Z	720.2		-	-	-	-	-	-		0
	IV	720.3		-	-	-	-	-	-		0
	V	720.4		-	-	-	-	-	-		0
Multipoint axis error compensation		730	0	-	-	-	-	-	-	$0=\quad$ linear compensation active	$\% 00000$ (0)
	X									+1 = X axis, multipoint compensation active	
	Y		1							$+2=Y$ axis, multipoint compensation active	
	Z		2							$+4=\mathrm{Z}$ axis, multipoint compensation active	
	IV		3							$+8=1 \mathrm{~V}$. axis, multipoint compensation active	
	V		4							$+16=\mathrm{V}$. axis, multipoint compensation active	
Display mode for rotary axes and PLC auxiliary axes										0 to ± 99999.9999 [mm] or [${ }^{\circ}$]	
	X	810.0		-	-	-	-	-	-	$0=$ display ± 99999.9999	0
	Y	810.1		-	-	-	-	-	-	(software limit switch active)	0
	Z	810.2		-	-	-	-	-	-	$\neq 0 \quad$ modulo value for display	0
	IV			-	-	-	-	-	-	(software limit switch inactive)	0
	V	$\begin{array}{\|l\|l} 810.3 \\ 810.4 \\ \hline \end{array}$		-	-	-	-	-			0

Function				A	B	C	D	E	F	Input	AE-6
		No.	Bit								Entry Value
Software limit switch ranges											
Default setting after power-on:	Y+	910.1		-	-	-	-	-	-	-99 999.9999 to +99 999.9999 [mm]	"
	Z+	910.2		-	-	-	-	-	-		"
Activation via PLC:	IV+	910.3		-	-	-	-	-	-	rotary axis:	
$\mathrm{M} 2817=0, \mathrm{M} 2816=0$ strobe marker M2824	V+	910.4		-	-	-	-	-	-	-99 999.9999 to +99 999.9999 []	"
	X-	920.0		-	-	-	-	-	-		-99 999.9999
	Y-	920.1		-	-	-	-	-	-		"
	Z-	920.2		-	-	-	-	-	-		"
	IV- V-	$\begin{aligned} & 920.3 \\ & 920.4 \end{aligned}$		-	-	-	-	-	-		
Range 2											
	X+	911.0		-	-	-	-	-	-	linear axis:	+99 999.9999
Activation via PLC:$\mathrm{M} 2817=0, \mathrm{M} 2816=1$	Y+	911.1		-	-	-	-	-	-	-99 999.9999 to +99 999.9999 [mm]	"
	Z+	911.2		-	-	-	-	-	-		
strobe marker M2824	IV+	911.3		*	-	-	-	-	-	rotary axis:	
	V+	911.4		-	-	-	-	-	-	-99 999.9999 to +99 999.9999 []	
	X-	921.0		-	-	-	-	-	-		-99 999.9999
	Y-	921.1		-	-	-	-	-	-		
	Z-	921.2		-	-	-	-	-	-		"
	$\begin{aligned} & \text { IV- } \\ & \text { V- } \end{aligned}$	$\begin{aligned} & 921.3 \\ & 921.4 \end{aligned}$		-	-	-	-	-	-		
Range 3											
	X+	912.0		-	-	-	-	-	-	linear axis:	+99 999.9999
Activation via PLC:	Y+	912.1		-	-	-	-	-	-	-99 999.9999 to +99 999.9999 [mm]	
M 2817 = $1, \mathrm{M} 2816=1$ strobe marker M2824	Z+	912.2		*	-	-	-	-	-		
	IV+	912.3		*	-	*	-	-	-	rotary axis:	
	V+	912.4		-	-	-	-	-	-	-99 999.9999 to +99 999.9999 []	
	X-	922.0		-	-	-	-	-	-		-99 999.9999
	Y-	922.1		-	-	-	-	-	-		"
	Z- IV-	922.2		-	-	-	-	-	-		"
	V-	922.4		-	-	-	-	-	-		"

Function		MP		A	B	C	D	E	F	Input	AE-6 Entry Value
		No.	Bit								
Datum for positioning blocks with M92 (referenced to the machine datum)	$\begin{aligned} & X \\ & Y \\ & Y \\ & Z \\ & \text { IV } \\ & \text { V } \end{aligned}$	$\begin{aligned} & 950.0 \\ & 950.1 \\ & 950.2 \\ & 950.3 \\ & 950.4 \end{aligned}$								```linear axis: -99 999.9999 to +99 999.9999 [mm] rotary axis: -99 999.9999 to +99 999.9999 []```	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
Target position for simulated tool change for TOOL CALL during block scan	$\begin{aligned} & X \\ & Y \\ & Z \\ & Z \\ & \text { IV } \\ & V \end{aligned}$	$\begin{aligned} & 951.0 \\ & 951.1 \\ & 951.2 \\ & 951.3 \\ & 951.4 \end{aligned}$			-	$\begin{array}{\|l} 09 \\ 09 \\ 09 \\ 09 \\ 09 \end{array}$	$\begin{aligned} & 09 \\ & 09 \\ & 09 \\ & 09 \\ & 09 \end{aligned}$	$\begin{aligned} & 08 \\ & 08 \\ & 08 \\ & 08 \\ & 08 \end{aligned}$	-	```linear axis: -99 999.9999 to +99 999.9999 [mm] rotary axis: -99 999.9999 to +99 999.9999 []```	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
Shifting the machine datum (referenced to the REF mark of the encoder)	$\begin{aligned} & X \\ & Y \\ & Y \\ & Z \\ & \text { IV } \\ & \text { V } \end{aligned}$	$\begin{aligned} & 960.0 \\ & 960.1 \\ & 960.2 \\ & 960.3 \\ & 960.4 \end{aligned}$			- - - - -	$\stackrel{+}{+}$		$\stackrel{+}{*}$	$\stackrel{+}{*}$	```linear axis: -99 999.9999 to +99 999.9999 [mm] rotary axis: -99 999.9999 to +99 999.9999 []```	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$

Function		MP		A	B	C	D	E	F	Input	AE-6
		No.	Bit								Entry Value
Reference mark evaluation Traverse direction for passing over the reference marks	$\begin{aligned} & X \\ & Y \\ & Y \\ & Z \\ & \text { IV } \\ & \text { V } \\ & \hline \end{aligned}$	1320	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	-	-	-	-		-	$0=$ positive $+1=$ X axis negative $+2=$ Y axis negative $+4=$ Z axis negative $+8=$ IV. axis negative $+16=$ V. axis negative	$\begin{gathered} \% 00000 \\ \\ (0) \end{gathered}$
Feed rate for passing over the reference marks	$\begin{aligned} & X \\ & Y \\ & Y \\ & Z \\ & \text { IV } \\ & \text { V } \end{aligned}$	$\begin{aligned} & 1330.0 \\ & 1330.1 \\ & 1330.2 \\ & 1330.3 \\ & 1330.4 \end{aligned}$		$\stackrel{+}{*}$		$\stackrel{+}{\bullet}$	$\stackrel{+}{*}$	-	-	linear axis: 10 to 30000 [mm/min] rotary axis: 10 to 30000 [$\% / \mathrm{min}$]	10000 10000 10000 10000 10000
Feed rate for leaving the reference end position (only if MP1350 = 2)	$\begin{aligned} & X \\ & Y \\ & Z \\ & \text { IV } \\ & \text { V } \\ & \hline \end{aligned}$	$\begin{aligned} & 1331.0 \\ & 1331.1 \\ & 1331.2 \\ & 1331.3 \\ & 1331.4 \end{aligned}$		$\stackrel{+}{\bullet}$	-	$\stackrel{+}{*}$	$\stackrel{+}{*}$	$\stackrel{\rightharpoonup}{*}$	-	linear axis: 10 to 500 [mm/min] rotary axis: 10 to 500 [$\% / \mathrm{min}$]	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \\ & 200 \\ & \hline \end{aligned}$
Axis sequence for reference mark traverse 1. axis 2. axis 3. axis 4. axis 5. axis		$\begin{aligned} & 1340.0 \\ & 1340.1 \\ & 1340.2 \\ & 1340.3 \\ & 1340.4 \end{aligned}$		$\stackrel{+}{*}$	-	-	-	$\stackrel{\rightharpoonup}{*}$	-	$0=$ no ref. mark traverse $1=$ X $2=$ Y $3=$ Z $4=$ $I V$ $5=$ V	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$
Selecting the functional procedure for passing over the reference marks	$\begin{aligned} & X \\ & Y \\ & Y \\ & Z \\ & \text { IV } \\ & \text { V } \end{aligned}$	$\begin{aligned} & 1350.0 \\ & 1350.1 \\ & 1350.2 \\ & 1350.3 \\ & 1350.4 \end{aligned}$		$\stackrel{+}{*}$	$\stackrel{+}{*}$	$\stackrel{+}{\bullet}$	$\stackrel{+}{*}$	-	$\stackrel{\bullet}{\bullet}$	$0=$ position encoder with distance-coded reference marks (1. mode) $1=$ position encoder without distance-coded reference marks $2=$ special function (linear measurement $3=$with rotary encoder) position encoder with distance-coded reference marks (2. mode)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$

Function		MP		A	B	C	D	E	F	Input	AE-6 Entry Value
		No.	Bit								
Feed forward control or trailing mode in the operating modes "Positioning with MDI" "Program Run / Single Block" "Program Run / Full Sequence"		1390		-	-	-	-	-	-	$\begin{array}{ll} \hline 0= & \text { feed forward control } \\ 1= & \text { trailing mode } \end{array}$	0
Feed forward control in all operating modes	$\begin{aligned} & X \\ & Y \\ & \text { Z } \\ & \text { IV } \\ & \text { V } \end{aligned}$		$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	-	-	-	-	-	02	bit not set: control in the operating modes "Positioning with MDI", "Program Run / Single Block" and "Program Run / Full Sequence" according to MP1390 bit set: feed forward control in all operating modes	\% 00000

Operation with Feed Forward Control

Cams for "Reference End Position":

The reference marks can either be traversed manually using the axis direction keys or automatically with the start key. It is not necessary to enter a code number for the manual traverse as was the case with preceding TNC models. The traverse direction for automatic traverse of the reference marks is defined in MP1320. In order to reverse the traverse direction at the end of the traverse range, a cam for "reference end position" is required. The trigger signals "ref. end position" are assigned to free PLC inputs. By the PLC software these PLC inputs are connected to the PLC markers M2506 and M2556 to M25599. Depending on the entry value of MP1350 the TNC behaves differently.

Linear Encoder with Distance-Coded Reference Marks (MP 1350.X = 0), Mode 1

If the trigger signal "ref. end position" is set when starting reference mark traverse, the axis moves in the direction opposite to that set in the MP1320. If the trigger signal "ref. end position" is only set during automatic traverse, the TNC ignores this signal. Thus, there must be at least two reference marks within the range of the "reference end position". Ref. mark evaluation takes place either in the range of the "ref. end position" or else beyond this range. In case of an evaluation beyond the software limit switch range, the axis automatically moves to the software limit switch after evaluation.

Linear Encoder without Distance-Coded Reference Marks (MP 1350.X = 1)

The traverse direction is automatically reversed, if the axis traverses the cam for "ref. end position". If the axis is already in the range of the "reference end position" range when starting, it moves immediately in the opposite direction. For this reason the reference mark has to be outside the "ref. end position" range.

Special Operation: Linear Measurement with a Rotary Encoder (MP1350.X = 2)

The axis automatically moves to the cam for "reference end position" at the defined feed rate (MP1330). This axis is started again at a reduced feed rate (MP1331) in the opposite direction; the first reference mark is evaluated after the end of the "reference end position" range has been reached. Then the axis is stopped. If the axis is already in the "reference end position" range when starting, it moves immediately at the reduced feed rate (MP1331) in the direction opposite to that indicated in MP1320.

Linear Encoder with Distance-Coded Reference Marks (MP1350.X = 3), Mode 2

If the trigger signal "reference end position" is set during reference mark traverse, the axis moves opposite to the direction defined in MP1320. The signal "ref. end position" is not ignored by the NC. it is only set during automatic traverse. The traverse direction is reversed immediately. Thus, no reference marks are required in the "ref. end position" range.

Function		M		A	B	C	D	E	F	Input	AE-6
		No.	Bit								Entry Value
1. block of Kv factors for operation with feed forward control	X	1510.0		-	-	-	-	-	-	0.1 to 20	1
	Y	1510.1		-	-	-	-	-	-		1
	Z	1510.2		-	-	-	-	-	-		1
	IV	1510.3		-	-	-	-	-	-		1
	V	1510.4		-	-	-	-	-	-		1
Stiction compensation Duration of stiction compensation (differential part)	X	1511.0		-	-	-	-	-	-	0 to 16777215 [$\mu \mathrm{s}$]	0
	Y	1511.1		-	-	-	-	-	-		0
	Z	1511.2		-	-	-	-	-	-		0
	IV	1511.3		-	-	-	-	-	-		0
	V	1511.4		-	-	-	-	-	-		0
Limitation of stiction compensation (differential part)	X	1512.0		-	-	-	-	-	-	0 to 16777215 [counting steps]	0
	Y	1512.1		-	-	-	-	-	-		0
	Z	1512.2		-	-	-	-	-	-		0
	IV	1512.3		-	-	-	-	-	-		0
	V	1512.4		-	-	-	-	-	-		0
Feed rate for stiction compensation (differential part)	X	1513.0		-	-	-	-	-	-	0 to 300000 [mm/min]	0
	Y	1513.1		-	-	-	-	-	-		0
	Z	1513.2		-	-	-	-	-	-		0
	IV	1513.3		-	-	-	-	-	-		0
	V	1513.4		-	-	-	-	-	-		0
2. block of Kv factors for operation with feed forward control M105: enable M106: disable	X	1515.0		-	-	-	-	-	-	0.1 to 10	1
	Y	1515.1		-	-	-	-	-	-		1
	Z	1515.2		-	-	-	-	-	-		1
	IV	1515.3		-	-	-	-	-	-		1
	V	1515.4		-	-	-	-	-	-		1
Approach speed and transient behaviour when accelerating		1520		-	-	-	-	-	-	0.1 to 10 [m/min]	1
Velocity below which the positioning window is monitored	X	1525.0		-	-	-	-	-	02	0.1 to 10.000 [mm/min]	0
	Y	1525.1		-	-	-	-	-	02		0
	Z	1525.2		-	-	-	-	-	02	recommended value: $0.5 \mathrm{~mm} / \mathrm{min}$	0
	IV	1525.3		-	-	-	-	-	02		0
	V	1525.4		-	-	-	-	-	02		0

Operation with Servo Lag

Function		MP		A	B	C			E	F	Input	AE-6 Entry Value
		No.	Bit									
Position monitoring during operation with servo lag cancellable (POSITIONING ERROR)	$\begin{aligned} & X \\ & Y \\ & Y \\ & Z \\ & \text { IV } \\ & \text { V } \end{aligned}$	$\begin{aligned} & 1710 \\ & 1710.0 \\ & 1710.1 \\ & 1710.2 \\ & 1710.3 \\ & 1710.4 \end{aligned}$		-		-					0 to 100 [mm] 0 to 300 [mm]	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$
EMERGENCY STOP (GROSS POSITIONING ERROR)	$\begin{aligned} & X \\ & Y \\ & Y \\ & Z \\ & \text { IV } \\ & \text { V } \end{aligned}$	$\begin{aligned} & 1720 \\ & 1720.0 \\ & 1720.1 \\ & 1720.2 \\ & 1720.3 \\ & 1720.4 \end{aligned}$		- - - -		-					0 to 100 [mm] 0 to 300 [mm]	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$
1. block of Kv factors for the trailing mode	$\begin{aligned} & X \\ & Y \\ & Z \\ & Z \\ & I V \\ & V \end{aligned}$	$\begin{aligned} & 1810.0 \\ & 1810.1 \\ & 1810.2 \\ & 1810.3 \\ & 1810.4 \end{aligned}$		$\stackrel{+}{\bullet}$	$\stackrel{\rightharpoonup}{*}$	*					0.1 to 10	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
2. block of Kv factors for the trailing mode M105: enable M106: disable	$\begin{aligned} & X \\ & Y \\ & Y \\ & Z \\ & \text { IV } \\ & \text { V } \end{aligned}$	$\begin{aligned} & 1815.0 \\ & 1815.1 \\ & 1815.2 \\ & 1815.3 \\ & 1815.4 \end{aligned}$		- - - - -	- - - - -	- - - - -			$\stackrel{\bullet}{\bullet}$	$\stackrel{\bullet}{*}$	0.1 to 10	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$

Function		MP		A		C		D	E	F	Input	AE-6 Entry Value
		No.	Bit									
Multiplication factor Kv (not effective with M05)		1820		-	-						0.001 to 1.000	
	X	1820.0		-	-			-	-	-		1
	Y	1820.1		-	-	-		-	-	-		1
	Z	1820.2		-	-			-	-	-		1
	IV	1820.3		-	-			-	-	-		1
	V	1820.4		-	-			-	-	-		1
Kink point												
		1830		-	-						0 to 100.000 [\%]	
	X	1830.0		-	-			-	-	-		100
	Y	1830.1		-	-		-	-	-	-		100
	Z	1830.2		-	-		-	-	-	-		100
	IV	1830.3		-	-		-	-	-	-		100
	V	1830.4		-	-			-	-	-		100

Spindle

Function	MP		A	B	C		D	E	F	Input		AE-6 Entry Value
	No.	Bit										
Output of the spindle speedcoded	3010		-	-		-	-	-			$0=\quad$ spindle speed not output	6
											$\begin{array}{ll}1= & \text { only if speed changes } \\ 2= & \text { with every TOOL CALL }\end{array}$	
analogue											$3=$ gear switching signal only if gear range $4=$ changes gear switching signal with every $5=$ TOOL CALL no gear switching signal	
regulated spindle for orientation											$6=$ gear switching signal only if gear range changes $7=$ gear switching signal with every TOOL CALL $8=$ no gear switching signal	
Output of an analogue voltage at the analogue output of the spindle (only if MP3010 < 3)	3011		-	-		-	-	$\stackrel{\bullet}{*}$			$0=$ no function $1=$ voltage is proportional to the current feed rate $2=$ voltage defined via PLC (module 9130) $3=$ voltage defined via M-function $(\mathrm{M} 200-\mathrm{M} 204)$	0
Feed rate that corresponds to an analogue voltage of 10 V (only if MP3011 = 1)	3012		-	-		-	-	-			0 to 300000 [mm/min]	0

Function	$\text { No. }{ }^{\text {MP }} \text { Bit }$	A	B	c	D	E	F	Input	AE-6 Entry Value
LASER function with M202 Characteristic curve kink points Speed	3013.0 3013.1 3013.2 3013.3 3013.4 3013.5 3013.6 3013.7 3013.8 3013.9 3013.10 3013.11							10 to 300000 [mm/min]	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
Characteristic curve kink points Voltage	3014.0 3014.1 3014.2 3014.3 3014.4 3014.5 3014.6 30147 3014.7 3014.8 3014.9 3014.10 3014.11								$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
Limitation of speed code	3032	04	-	-	-	-	-	0 to 99999 00991 = no limitation	00991

Function		$\text { No. }^{\text {MI }}$		A	B	C	D	E	F	Input	AE-6 Entry Value
Ramp gradient of the spindle:										0 to 1.999 [V/ms]	
		$\begin{aligned} & 3410 \\ & 3410.0 \end{aligned}$		-	$\begin{aligned} & 103 \\ & 03 \end{aligned}$	-	-	-	-		0.1
- Oriented spindle stop;		3410.1		-	03	-	-	-	-		0.1
- "Tapping" cycle;		3410.2		08	11	-	-	-	-		0.1
- "Rigid Tapping" cycle		3410.3		-	-	-	-	-	-		0.1
Positioning window for the spindle		3420		-	-	-	-	-	-	0 to 65535 [increments]	10
Spindle preset		3430		-	-	-	-	-	-	0 to 360 [${ }^{\circ}$]	0
Kv factor for the spindle (per gear range)										0.1 to 10	
	1	3440.0		-	-	-	-	-	-		1
	2	3440.1		-	-	-	-	-	-		1
	3	3440.2		-	-	-	-	-	-		1
	4	3440.3		-	-	-	-	-	-		1
	5	3440.4		-	-	-	-	-	-		1
	6	3440.5		-	-	-	-	-	-		1
	7	3440.6		-	-	.	-	-	-		1
	8	3440.7		-	-	-	-	-	-		1

Function		$\text { No. }{ }^{\text {MP }} \text { Bit }$	A	B	c	D	E	F	Input	AE-6 Entry Value
Nominal spindle speed gear range	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	3510.0 3510.2 3510.3 3510.4 3510.5 3510.6 3510.7							0 to 99999.999 [rpm]	$\begin{aligned} & 1000 \\ & 2000 \\ & 3000 \\ & 4000 \\ & 5000 \\ & 6000 \\ & 7000 \\ & 8000 \end{aligned}$
Maximum spindle speed gear range	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	3515.0 3515.1 3515.3 3515.4 3515.5 3515.6 3515.7							0 to 99999 [rpm]	$\begin{aligned} & 1200 \\ & 2400 \\ & 3600 \\ & 4800 \\ & 6000 \\ & 7200 \\ & 8400 \\ & 9600 \end{aligned}$
Spindle speed if marker 2501 is set		3520.0	-	-	-	-	-	-	0 to 99 999.999 [rpm] direction of rotation always positive	200
Spindle speed for oriented spindle stop		3520.1	-	-	-	-	-	-	0 to 99999.999 [rpm]	100

Integral PLC

Function	$\text { No. }{ }^{\text {MP }} \text { Bit }$	A	B	C	D	E	F	Input	AE-6 Entry Value
PLC: preset counter values counters 11-31								0 to 65535 [PLC cycles]	$\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 20 \\ & 21 \\ & 22 \\ & 23 \\ & 24 \\ & 25 \\ & 26 \\ & 27 \\ & 28 \\ & 29 \\ & 30 \\ & 31 \end{aligned}$
Fast PLC input Defining the fast input	4130	-	-	-	-	-	-	0 to 254	0
Defining the active level of the fast input	4131	-	-	-	-	-	-	$\begin{array}{\|ll\|} \hline 0 & =\text { activation with LOW level } \\ 1= & \text { activation with HIGH level } \\ \hline \end{array}$	0

Function			Bit	A	B	C	D	E	F	Input	AE-6 Entry Value
Setting a number										-99 999.9999 to +99 999.9999 [mm] or [$\left.{ }^{\circ}\right]$	
	D768	4210.0		-	-	-	-	-	-		+10
	D772	4210.1		-	-	-	-	-	-		+1
	D776	4210.2		-	-	-	-		-		+2
	D780	4210.3		-	-	-	-		-		+3
	D784	4210.4		-	-	-	-	-	-		+4
	D788	4210.5		-	-	-	-		-		+5
	D792	4210.6		-	,	,	-		-		+6
	D796	4210.7		-	-	-	-		-		+7
	D800	4210.8		-	-	-	-		.		+8
	D804	4210.9		-	-	-	-		-		+9
	D808	4210.10		-	-	,	-		-		+10
	D812	4210.11		-	-	-	-		-		+11
	D816	4210.12		-	-	-	-		.		+12
	D820	4210.13		-	-	-			-		+13
	D824	4210.14		-	-	-			-		+14
	D828	4210.15		-	-	-			-		+15
	D832	4210.16			-	-			-		+16
	D836	4210.17		-	-	$\stackrel{+}{+}$			-		+17
	D840	4210.18		-	-	-			-		+18
	D844	4210.19		-	.	-	-		-		+19
	D848	4210.20		-	,	-	-		-		+20
	D852	4210.21		-	-	-	-		-		+21
	D856	4210.22		-	-	-	-		-		+22
	D860	4210.23		-	-	-	-		-		+23
	D864	4210.24		-	-	-	-		-		+24
	D868	4210.25		-	-	-			-		+25
	D872	4210.26		-	-	-			-		+26
	D880	4210.28		-	-	$\stackrel{\square}{*}$			-		+27
	D884	4210.29		-	-	-	-		-		+29
	D888	4210.30		-	-	-	-	-	-		+30
	D892	4210.31		-	-	-	-	-	-		+31

1) MP without function; therefore, do not enter 0 .

Adaptation of the Data Interface

* accessible via code number 123

Function		A	B	C	D	E	F	Input	AE-6 Entry Value
	No. Bit								
Data format and transfer stop operating mode EXT operating mode EXT1 operating mode EXT2 operating mode EXT3 (PLC)	$\begin{aligned} & 5020.0^{*} \\ & 5020.1^{*} \\ & 5020.2^{*} \end{aligned}$	$\begin{array}{\|c\|} \hline 105 \\ 05 \\ 05 \\ - \end{array}$	$\begin{aligned} & 108 \\ & 08 \\ & 08 \end{aligned}$			-		0 to 255	$\begin{aligned} & 168 \\ & 168 \\ & 168 \end{aligned}$
7 or 8 data bits	0							$\begin{array}{ll} +0= & 7 \text { data bits, bit } 8=\text { parity } \\ +1= & 8 \text { data bits, bit } 8=0, \text { bit } 9=\text { parity } \end{array}$	
Block check character	1							$\begin{array}{ll}+0= & \text { BCC may be any character } \\ +2= & \text { control character not BCC }\end{array}$	
Transfer stop by RTS	2							$\begin{array}{ll} +0= & \text { inactive } \\ +4= & \text { active } \end{array}$	
Transfer stop by DC3	3							$\begin{array}{ll} +0= & \text { inactive } \\ +8= & \text { active } \\ \hline \end{array}$	
Character parity even/odd	4							$\begin{array}{ll} +0= & \text { even } \\ +16= & \text { odd } \end{array}$	
Character parity on/off	5							$\begin{array}{ll} +0= & \text { off } \\ +32= & \text { on } \end{array}$	
Number of stop bits	$\begin{aligned} & \hline 6 \\ & 7 \end{aligned}$							$\begin{array}{\|ccl} +64= & \text { bit } 6=1 \\ +128= & \text { bit } 7=1 & \\ \text { bit } 6 & \text { bit } 7 & \\ 0 & 1 & =11 / 2 \text { stop bits } \\ 1 & 0 & =2 \text { stop bits } \\ 0 & 1 & =1 \text { stop bit } \\ 1 & 1 & =1 \text { stop bit } \end{array}$	

[^8]

[^9]| Function | | No. | | A | B | C | D | E | F | Input | AE-6
 Entry Value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ASCII character for file type (for data output)
 EXT1
 EXT2
 EXT3 (PLC)
 ASCII character for output code
 EXT1
 EXT2
 EXT3 (PLC)
 ASCII character for beginning of command block
 EXT1
 EXT2
 EXT3 (PLC)
 ASCII character for end of command block
 EXT1
 EXT2
 EXT3 (PLC) | | $\begin{aligned} & 5204.0^{*} \\ & 5204.1^{*} \\ & 5204.2^{*} \end{aligned}$ | | 05 05 | 08 | * | $\stackrel{\rightharpoonup}{\bullet}$ | $\stackrel{+}{*}$ | - | 0 to 127 | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ |
| | (A) | $\begin{aligned} & 5205.0^{*} \\ & 5205.1^{*} \\ & 5205.2^{*} \end{aligned}$ | | 05 05 | $\begin{aligned} & 08 \\ & 08 \end{aligned}$ | - | $\stackrel{\rightharpoonup}{*}$ | $\stackrel{+}{*}$ | * | 0 to 127 | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ |
| | (SOH) | $\begin{aligned} & 5206.0^{*} \\ & 5206.1^{*} \\ & 5206.2^{*} \end{aligned}$ | | 05 05 | $\begin{aligned} & 08 \\ & 08 \end{aligned}$ | - | $\stackrel{\rightharpoonup}{\bullet}$ | $\stackrel{+}{*}$ | $\stackrel{+}{*}$ | 0 to 127 | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ |
| | (ETB) | $\begin{aligned} & 5207.0^{*} \\ & 5207.1^{*} \\ & 5207.2^{*} \end{aligned}$ | | 05 05 | $\begin{aligned} & 08 \\ & 08 \end{aligned}$ | $\stackrel{+}{*}$ | $\stackrel{\rightharpoonup}{*}$ | $\stackrel{+}{*}$ | - | 0 to 127 | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ |
| ASCII character for positive acknowledgement
 EXT1
 EXT2
 EXT3 (PLC) | (ACK) | $\begin{aligned} & 5208.0^{*} \\ & 5208.1^{*} \\ & 5208.2^{*} \end{aligned}$ | | 05 05 | $\begin{aligned} & 08 \\ & 08 \end{aligned}$ | - | $\stackrel{\rightharpoonup}{*}$ | - | - | 0 to 127 | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ |
| ASCII character for negative acknowledgement
 EXT1
 EXT2
 EXT3 (PLC) | (NAK) | $\begin{aligned} & 5209.0^{*} \\ & 5209.1^{*} \\ & 5209.2^{*} \\ & \hline \end{aligned}$ | | 05 05 | 08 | - | - | - | - | 0 to 127 | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ |
| ASCII character for end of transfer
 EXT1
 EXT2
 EXT3 (PLC) | (EOT) | $\begin{aligned} & 5210.0^{*} \\ & 5210.1^{*} \\ & 5210.2^{*} \end{aligned}$ | | 05 | 08 | * | $\stackrel{ }{*}$ | - | * | 0 to 127 | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ |

* accessible via code number 123

3D-Touch Probe (General Parameters)

* accessible via code number 123

Digitizing with 3D-Touch Probe

Function	MP		A	B	C	D	E	F	Input	AE-6 Entry Value
Number of oscillations in normal direction	6210		-	-	-	-	-	-	0 to $65.535[1 / \mathrm{sec}]$	0
Lubrication of touch probe axis - displacement for lubrication at the end of a line	6220		-	-	-	-	-	-	0.000 to 999.999 [mm]	0
- time intervals for lubrication	6221		-	-	-	-	-	-	0 to 65535 [min]	0
Feed rate in normal direction	6230		-	-	-	-	-	-	0 to 1000 [mm/min]	0
Maximum deflection of the stylus	6240		-	-	-	-	-	-	0 to 10 [mm]	0
Output of M90 on NC blocks of digitized data	6260		-	-	-	-	-	-	$\begin{array}{\|l} 0=\text { no output } \\ 1=\text { output } \end{array}$	0
Rounding the decimal places (NC blocks)	6270		-	-	-	-	-	-	$\begin{aligned} & 0=\text { output in } 0.001 \mathrm{~mm}(1 \mu \mathrm{~m}) \\ & 1=\text { output in } 0.01 \mathrm{~mm}(10 \mu \mathrm{~m}) \\ & 2=\text { output in } 0.0001 \mathrm{~mm}(0.1 \mu \mathrm{~m}) \end{aligned}$	0

Tool Calibration with TT 110

Function	No.		A	B	C	D	E	F	Input	AE-6 Entry Value
Tool calibration cycles	6500		-	-	-	-	-	-	$0=$ cycles inhibited 1 = cycles enabled	0
Probing direction for tool calibration	6505		-	-	-	-	-	-	$0=$ pos. probing direction in the angular reference axis (0° axis) $1=$ pos. probing direction in the $+90^{\circ}$ axis $2=$ neg. probing direction in the angular reference axis (0° axis) $3=$ neg. probing direction in the $+90^{\circ}$ axis	0
Calculation of probing feed rate	6507		-	-	-	-	-	-	$0=$ calculation of probing feed with constant tolerance $1=$ calculation of probing feed with variable tolerance $2=$ constant probing feed	0
Maximum permissible measuring error when calibrating with a rotating tool	6510		-	-	-	-	-	-	0.002 to 0.999 [mm]	0.005
Probing feed rate when calibrating with a non-rotating tool	6520		-	-	-	-	-	-	10 to 3000 [mm/min]	10
Distance between lower edge of tool and upper edge of stylus for tool radius calibration	6530		-	-	-	-	-	-	0.001 to 99.9999 [mm]	10
Diameter or edge length of the TT 110 stylus	6531		-	-	-	-	-	-	0.001 to 99999.9999 [mm]	10

Function		No.		A	B	C	D	E	F	Input	AE-6 Entry Value
Safety zone around the stylus of TT 110 for prepositioning		6540		-	-	-	-	-	-	0.001 to 99999.9999 [mm]	10
Rapid traverse in the probing cycle		6550		-	-	-	-	-	-	10 to 10000 [m/min]	10
M-function for oriented spindle stop for measuring individual cutting edges		6560		-	-	-	-	-	-	$\begin{array}{\|ll} -1= & \text { oriented spindle stop via NC } \\ 0= & \text { function inactive } \\ 1 \text { to } 88= & \text { number of M-function for oriented } \\ & \text { spindle stop via PLC } \end{array}$	10
Maximum permissible surface cutting speed at the cutting edges of the tool		6570		-	-	-	-	-	-	1.0000 to 120.0000 [m/min]	100
Center coordinates of the TT 110 stylus referenced to the machine datum	$\begin{aligned} & X \\ & Y \\ & \text { Z } \end{aligned}$	$\begin{aligned} & 6580.0 \\ & 6580.1 \\ & 6580.2 \end{aligned}$		-	-	-	-	-	$\stackrel{\rightharpoonup}{*}$	- 99999.9999 to + 99999.9999 [mm]	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$

Tapping

Function	MP		A	B	C	D	E	F	Input	AE-6 Entry Value
Minimum feed override when tapping	7110.0		-	-	-	-	-	-	0 to 150 [\%]	95
Maximum feed override when tapping	7110.1		-	-	-	-	-	-	0 to 150 [\%]	105
Dwell time for change of direction of spindle rotation in a tapping cycle	7120.0		-	-	-	-	-	-	0 to 65.535 [s]	0
Spindle deceleration time in a tapping cycle (only effective with BCD output of the spindle speed)	7120.1		-	-	-	-	-	-	0 to 65.535 [s]	0
Spindle slow-down time after reaching the total hole depth	7120.2		-	-	-	-	-	-	0 to 65.535 [s]	0
Tapping without floating tap holder - run-in behaviour of the spindle	7130		-	-	-	-	-	-	0.001 to 10 [$/ \mathrm{min}]$	0.5
during acceleration	7140		-	-	-	-	-	-	0.01 to 0.999	0.15
Positioning window of the tool axis	7150		-	-	-	-	-	-	0.0001 to 2 [mm]	0.05
Spindle orientation at the beginning of cycle 17 "Rigid Tapping"	7160		-	-	-	-	08	-	$0=$ spindle orientation is executed $1=$ spindle orientation is not executed	1

Display and Programming

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Function} \& \multicolumn{2}{|l|}{MP} \& A \& B \& C \& D \& E \& F \& Input \& \& \begin{tabular}{l}
AE-6 \\
Entry Value
\end{tabular} \\
\hline Programming station \& \& 7210* \& \& - \& - \& - \& - \& - \& - \& \[
\begin{aligned}
\& 0= \\
\& 1= \\
\& 2=
\end{aligned}
\] \& \begin{tabular}{l}
control \\
programming station: PLC active \\
programming station: PLC inactive
\end{tabular} \& 0 \\
\hline POWER INTERRUPTED \& \& 7212 \& \& - \& - \& - \& - \& - \& - \& \[
\begin{aligned}
\& 0= \\
\& 1=
\end{aligned}
\] \& press [CE] to confirm the message message is confirmed automatically \& 1 \\
\hline Block-number increment size (for ISO programming) \& \& 7220* \& \& 08 \& 08 \& - \& - \& - \& - \& \[
\begin{aligned}
\& \hline 0 \text { to } 250 \\
\& 0= \\
\& \hline
\end{aligned}
\] \& no generation \& 0 \\
\hline Maximum length of file names when opening a file \& \& 7222* \& \& - \& - \& - \& - \& - \& - \& \[
\begin{aligned}
\& 0= \\
\& 1= \\
\& 2=
\end{aligned}
\] \& max. 8 characters max. 12 characters max. 16 characters \& \\
\hline \begin{tabular}{l}
Disable file types \\
(for selection, table of contents and external data transfer) \\
HEIDENHAIN programs \\
ISO programs \\
Tool tables \\
Datum tables \\
Pallet tables \\
ASCII (text) files
\end{tabular} \& \[
\begin{aligned}
\& \text { (.H) } \\
\& \text { (.I) } \\
\& \text { (.T) } \\
\& \text { (.D) } \\
\& \text { (.P) } \\
\& \text { (.A) } \\
\& \hline
\end{aligned}
\] \& 7224* \& \[
\begin{aligned}
\& 0 \\
\& 1 \\
\& 2 \\
\& 3 \\
\& 4 \\
\& 5
\end{aligned}
\] \& \[
\begin{array}{|l|}
\hline 05 \\
\\
05 \\
05 \\
05 \\
05 \\
05 \\
05 \\
\hline
\end{array}
\] \& 08

08
08
08
08
08

08 \& | - |
:---
-
-
-
-
-

-
-
-
-
-
- \& | - |
| :--- |
| - |
| - |
| - |
| - |
| - |
| - |
| - | \& - \& \[

$$
\begin{aligned}
& 0= \\
& +1= \\
& +2= \\
& +4= \\
& +8= \\
& +16= \\
& +32=
\end{aligned}
$$

\] \& | no file type disabled |
| :--- |
| disabled | \& 0

\hline | Disable file types |
| :--- |
| (for selection, table of contents and external data transfer) |
| HEIDENHAIN programs |
| ISO programs |
| Tool tables |
| Datum tables |
| Pallet tables |
| ASCII (text) files |
| PLC HELP files |
| Measuring point tables | \& | (.H) |
| :--- |
| (.I) |
| (.T) |
| (.D) |
| (.P) |
| (.A) |
| (.HLP) |
| (.PNT) | \& 7224.0* \& \[

$$
\begin{aligned}
& 0 \\
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5 \\
& 6 \\
& 7 \\
& \hline
\end{aligned}
$$

\] \& \& - \& $\stackrel{+}{*}$ \& $\stackrel{*}{*}$ \& $\stackrel{\rightharpoonup}{*}$ \& - \& \[

$$
\begin{aligned}
& 0= \\
& +1= \\
& +2= \\
& +4= \\
& +8= \\
& +16= \\
& +32= \\
& +64= \\
& +128= \\
& \hline
\end{aligned}
$$

\] \& | no file type disabled |
| :--- |
| disabled | \& \[

$$
\begin{gathered}
\% 00000000 \\
(0)
\end{gathered}
$$
\]

\hline
\end{tabular}

* accessible via code number 123

Display and Programming

[^10]| Function | | No. | Bit | A | B | C | D | E | F | Input | AE-6
 Entry Value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inhibiting program entry if PGM No. = No. of OEM cycle | | 7240* | | - | - | - | - | - | - | $\begin{array}{ll} \hline 0= & \text { inhibited } \\ 1= & \text { not inhibited } \\ \hline \end{array}$ | 1 |
| Inhibiting HEIDENHAIN cycles
 cycle | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & \hline \end{aligned}$ | 7245.0 | $\begin{gathered} 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ \hline \end{gathered}$ | * | - | - | - | - | - | $\begin{array}{ll} 0 \text { to } 65535 \\ \text { bit }=0 & \rightarrow \text { cycle not inhibited } \\ \text { bit }=1 & \rightarrow \text { cycle inhibited } \end{array}$ | 0 |
| cycle | 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | 7245.1 | $\begin{gathered} \hline \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ \hline \end{gathered}$ | - | - | - | - | - | - | $\begin{array}{ll} 0 \text { to } 65535 & \\ \text { bit }=0 & \rightarrow \text { cycle not inhibited } \\ \text { bit }=1 & \rightarrow \text { cycle inhibited } \end{array}$ | 0 |

Function	MP		A	B	C	D	E	F	Input	AE-6 Entry Value
	No.	Bit								
Disable paraxial positioning blocks with R+/R- compensation	7246		-	-	-	-	-	-	$\begin{array}{ll} 0= & \text { enabled } \\ 1= & \text { disabled } \end{array}$	0
Difference between Q-parameter numbers for "DLG-DEF" block and "DLG-CALL" block in OEM cycle	7250		-	-	-	-	-	-	```0 to 50 0 if "DLG-CALL" blocks only```	0
Number of global Q-parameters that are transferred from an OEM cycle to the calling program	7251		-	*	-	-	-	-	$\begin{aligned} & 0 \text { to } 100 \\ & 40=\quad \text { the Q-parameters Q60 to Q90 } \\ & \quad \text { are global } \end{aligned}$	0
Central tool table	7260*		-	-	-	-	-	-	$\begin{array}{\|l\|} \hline 0 \text { to } 254 \\ 0=\text { no central tool file } \\ \text { entry value }=\text { number of tools } \\ \hline \end{array}$	254
Number of tools with pocket number	7261*		-	-	-	-	-	-	0 to 254	254

* accessible via code number 123

[^11]| Function | MP | | A | B | C | | E | F | Input | AE-6
 Entry Value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | No. | Bit | | | | | | | | |
| Display of the current feed rate in the TOOL.P file before start in the manual operating modes | 7270* | | - | * | - | - | - | - | $\left.0=\begin{array}{ll}\text { display of feed rate only when pressing } \\ \text { an axis direction key (feed from }\end{array}\right\}$MP1020.X individually for each axis)
 $1=$
 display of feed rate also before pressing
 an axis direction key (smallest value
 from MP1020.X for all axes) | 0 |
| Decimal sign | 7280* | | * | - | - | - | - | - | $\begin{array}{ll} \hline 0= & \text { decimal comma } \\ 1= & \text { decimal point } \\ \hline \end{array}$ | 0 |
| Tool length in ACTL/NOML display | 7285* | | - | - | - | - | - | - | $\begin{array}{ll} \hline 0= & \text { ignored } \\ 1= & \text { taken into account } \end{array}$ | 0 |
| Display step | $\begin{aligned} & \hline 7290 \\ & \\ & 7290.0^{*} \\ & 7290.1^{*} \\ & 7290.2^{*} \\ & 7290.3^{*} \\ & 7290.4^{*} \\ & 7290.0^{*} \\ & 7290.1^{*} \\ & 7290.2^{*} \\ & 7290.3^{*} \\ & 7290.4^{*} \end{aligned}$ | | - | - | | $\stackrel{-}{*}$ | | - | | $\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$ |
| Inhibiting datum setting (axis keys and soft keys) | 7295^{*} | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | - | - | - | - | - | - | $\begin{aligned} & \hline 0=\quad \text { entry not inhibited } \\ & +1=\text { X axis inhibited } \\ & +2=\text { Y axis inhibited } \\ & +4= \\ & \text { Z axis inhibited } \\ & +8= \\ & \text { IV. axis inhibited } \\ & +16=\mathrm{V} . \text { axis inhibited } \\ & \hline \end{aligned}$ | 0 |
| Datum setting via axis keys | 7296 | | - | - | - | - | 08 | - | $\begin{array}{\|ll} \hline 0= & \text { datum setting via axis keys and soft key } \\ 1= & \text { datum setting with soft key only } \\ \hline \end{array}$ | 0 |

* accessible via code number 123
${ }^{11}$ not with TNC 407

* accessible via code number 123

* accessible via code number 123

Colours, General Display and FK-Graphics

Function	$\begin{array}{l}\text { MP } \\ \text { No. }\end{array}$	Bit	A	B	C	D	E	F	Input
Entry Value									

User Parameters

Function	MP	MP	Bit	B	C	D	E	F	Input	
	10	7340.10								
Entry Value										

Colours for General Display and FK-Graphics

Function	$\text { No. }{ }^{\text {MP }} \text { Bit }$	A	B	C	D	E	F	Input	AE-6 Entry Value
Window frames	7350	-	-	-	-	-	-	\$0000000 to \$03F3F3F	\$030200C
Error messages	7351	-	-	-	-	-	-	\$0000000 to \$03F3F3F	\$03F3F3F
Operating mode "Machine" background text of operating mode dialogs	$\begin{aligned} & 7352.0 \\ & 7352.1 \\ & 752.2 \end{aligned}$	-	-			-	-	\$0000000 to \$03F3F3F	$\$ 0000000$ $\$ 0342008$ $\$ 03 F 3828$
Operating mode "Programming" background text of operating mode dialogs	$\begin{aligned} & 7353.0 \\ & 7353.1 \\ & 7353.2 \end{aligned}$	-	-	$\stackrel{\rightharpoonup}{*}$		-	$\stackrel{\rightharpoonup}{\bullet}$	\$0000000 to \$03F3F3F	$\$ 0000000$ $\$ 0342008$ \$03F3828

Function	$\text { No. }{ }^{\text {MP }} \text { Bit }$	A	B	C	D	E	F	Input	AE-6 Entry Value
Graphics: View in 3 planes (and Oscilloscope) background horizontal projection (grid) vertical and horizontal view (non-selected channel) coordinate system and texts in graphics display (cursor, data, detail) cursor (selected channel)	$\begin{aligned} & 7361.0 \\ & 7361.1 \\ & 7361.2 \\ & 7361.3 \\ & 7361.4 \end{aligned}$							\$0000000 to \$03F3F3F	$\begin{aligned} & \$ 0000000 \\ & \$ 0203038 \\ & \$ 0203038 \\ & \$ 03 F 3 F 3 F \\ & \$ 03 F 0000 \end{aligned}$
Additional status display in graphics window background colour of status display elements of status display headlines of status display separating lines background of graphics window background of status display symbols in status display values in status display	$\begin{aligned} & 7362.0 \\ & 7362.1 \\ & 7362.2 \\ & 7362.3 \\ & 7362.0 \\ & 7362.1 \\ & 7362.2 \\ & 7362.3 \end{aligned}$							$\$ 0000000$ to $\$ 03 F 3 F 3 F$ $\$ 0000000$ to $\$ 03 F 3 F 3 F$	$\begin{aligned} & \$ 0080400 \\ & \$ 00 C 0800 \\ & \$ 038240 C \\ & \$ 03 F 2 C 18 \\ & \hline \end{aligned}$
FK graphics background colour resolved contours subprograms and zoom frame alternative solutions non-resolved contours	$\begin{aligned} & 7363.0 \\ & 7363.1 \\ & 7363.2 \\ & 7363.3 \\ & 7363.4 \end{aligned}$		- - - - -			$\stackrel{*}{*}$		\$0000000 to \$03F3F3F	$\begin{aligned} & \$ 0000000 \\ & \$ 03 F 3 F 3 F \\ & \$ 0003 F 00 \\ & \$ 0003 F 00 \\ & \$ 03 F 0000 \end{aligned}$

Machining and Program Run

Function	MP	A	B	C	D	E	F	Input	AE-6
	No. Bit								Entry Value
Cycle "Scaling Factor" active in 2 or 3 axes	7410*	-	-	-	-	-	-	$\begin{array}{ll} 0= & 3 \text { axes } \\ 1= & \text { in the operating plane } \end{array}$	0
Tool data in TOUCH PROBE block	7411*	-	-	-	-	-	-	$\begin{array}{ll} \hline 0= & \text { the current tool data are overwritten with } \\ & \text { the calibrated touch probe data } \\ 1= & \text { the current tool data are retained } \end{array}$	0
Cycle for milling pockets with free-programmed contour - slot-milling direction - sequence for clearing out and slot milling - merge programmed contours - "clearing out" and "slot milling" to pocket depth or individually for each peck	7420*	-	-	-	-	-	-	0 to 15	$\begin{gathered} \text { \%0000 } \\ (0) \end{gathered}$
	0							$0=$ ccw for milling pockets $1=$ cw for milling islands cw for milling pockets ccw for milling islands	
	1							$\begin{array}{ll} \hline 0= & \text { first slot-milling, then clear out pocket } \\ 2= & \text { first clear out pocket, then slot-milling } \end{array}$	
	2							$\begin{array}{\|ll} \hline 0= & \begin{array}{l} \text { contours are only merged, if the } \\ \text { tool center paths intersect } \end{array} \\ 4= & \text { contours are merged, if the } \\ \text { programmed contours overlap } \end{array}$	
	3							$\begin{array}{ll} 0= & \text { "clearing out" and "slot milling" in one } \\ 8= & \begin{array}{l} \text { operation over all pecks } \\ \text { for each peck "slot milling" is run } \\ \text { before "clearing out" (depending on bit 1) } \end{array} \\ \hline \end{array}$	

* accessible via code number 123

Function	MP		A	B	C	D	E	F	Input	AE-6 Entry Value
	No.	Bit								
Overlapping factor for pocket milling	7430*		-	-	-	-	-	-	0.1 to 1.414	1
Tolerance range for circle end point (linear contour)	7431*		-	-	-	-	-	-	0.0001 to 0.016 [mm]	0.01
Output of M-functions	7440* $\begin{array}{ll}\text { * } & \\ & 0 \\ & 1 \\ & 2\end{array}$									
Programmed stop with M06			-	-	-	-	-	-	$\begin{array}{ll} \hline+0= & \text { program halt with M06 } \\ +1= & \text { no program halt with } \mathrm{M} 06 \\ \hline \end{array}$	$\begin{gathered} \text { \%01011 } \\ (11) \end{gathered}$
Output of M98, modal cycle call			-	-	-	-	-	-	$\begin{aligned} +0= & \text { no cycle call, normal code transfer of } \\ & \text { M89 at beginning of block } \\ +2= & \text { modal cycle call at end of block } \end{aligned}$	
Axis standstill when an M-function is output Exception: axis standstill always occurs with M-functions that result in a programmed stop (e.g. M00, M02 ...) or with a STOP or a CYCL CALL block			-	-	-	-	-	-	$\begin{aligned} +0= & \begin{array}{l} \text { program halt until acknowledgement } \\ \\ \\ \text { of M-function } \end{array} \\ +4= & \text { no program halt, TNC does not wait } \\ & \text { for acknowledgement } \end{aligned}$	
Select Kv factors with M105/M106		3	-	-	-	-	-	-	$\begin{aligned} & +0=\text { function not active } \\ & +8=\text { function active } \end{aligned}$	
Reduced feed rate in the tool axis with M103		4	-	-	-	-	-	-	$\begin{aligned} & +0=\text { function not active } \\ & +16=\text { function active } \\ & \hline \end{aligned}$	
Position for tool exchange (from MP951.X) during block scan	7450	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	-	-	09	09	08	-	$0=$ position ignored $+1=$ position of X axis taken into account $+2=$ position of Y axis taken into account $+4=$ position of Z axis taken into account $+8=$ position of IV. axis taken into account $+16=$ position of V . axis taken into account	$\% 00000$ (0)
Constant feed rate in corners	7460*		-	-	-	-	-	-	0 to $179.9999\left[{ }^{\circ}\right]$	10
Display mode and software limit switches for rotary axis	7470*		-	-	-	-	-	-	$\begin{aligned} 0= & 0 \text { to } \pm 359.999^{\circ}(\text { no software limit switch } \\ & \text { monitoring) } \\ 1= & 0 \text { to } \pm 99999.999^{\circ} \end{aligned}$	0

[^12]| Function | $\text { No. }{ }^{\text {MP }} \text { Bit }$ | A | B | C | D | E | F | Input | AE-6 Entry Value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Datum in datum table | 7475 | - | - | - | - | - | - | $\begin{array}{ll} 0= & \text { datum point is workpiece datum } \\ 1= & \text { datum point is machine datum } \\ \hline \end{array}$ | 0 |
| Output of tool number or pocket number
 with TOOL CALL block | 7480.0 | | | | 04 | 08
 08 | | 0 to 6
 $0=$ no output
 $1=$ output of tool number only when
 tool number changes (W262)
 $2=$ output of tool number with every
 TOOL CALL (W262)
 $3=$ output of pocket number (W262) and
 tool number (W264) only when tool
 $4=$number changes
 output of pocket number (W262) and tool
 number (W264) with every TOOL CALL
 $5=$output of pocket number (W262) and tool
 number (W264); pocket table does not
 $6=$change.
 output of pocket number (W264) with
 every TOOL CALL; pocket table does not
 change. | 2 |

Function	$\text { No. }{ }^{\text {MP }} \text { Bit }$	A	B	C	D	E	F	Input	AE-6 Entry Value
with TOOL DEF blocks (only if MP7260 > 0)	7480.1			05	04			$0=$ no output $1=$ output of tool number only when tool number changes (W262) $2=$ output of tool number with every TOOL DEF (W262) $3=$ output of pocket number (W262) and tool number (W264) only when tool number changes $4=\quad$ output of pocket number (W262) and tool number (W264) with every TOOL DEF	2
Number of traverse range limitations	7490	$\begin{gathered} 05 \\ 05 \\ - \\ - \end{gathered}$	$\begin{aligned} & 08 \\ & 08 \end{aligned}$			$\begin{array}{\|c\|} \hline \stackrel{ }{*} \\ 08 \\ 08 \end{array}$		$0=$ 1 range, 3 datum points $1=$ 3 ranges, 3 datum points $2=$ 1 range, 1 datum point $3=$ 3 ranges, 1 datum point	0

* accessible via code number 123

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Function \& No. \& Bit \& A \& B \& C \& D \& E \& F \& Input \& AE-6 Entry Value \\
\hline \begin{tabular}{l}
Description of the swivel head geometry \\
1. Parameter block \\
Selection of the transformed axis
\end{tabular} \& \[
7510
\] \& \[
\begin{aligned}
\& 0 \\
\& 1 \\
\& 2 \\
\& 3 \\
\& 4 \\
\& 5
\end{aligned}
\] \& - \& - \& - \& - \& 08 \& - \& \[
\left\lvert\, \begin{array}{lll}
0 \text { to } 63 \& \\
+1= \& \text { X-axis } \\
+2= \& \text { Y-axis } \\
+4= \& \text { Z-axis } \\
+8= \& \text { A-axis } \\
+16= \& \text { B-axis } \\
+32= \& \text { C-axis }
\end{array}\right.
\] \& 0 \\
\hline \begin{tabular}{l}
Additional identifier for transformation \\
Dimensions for transformation
\end{tabular} \& \[
7511
\]
\[
7512
\] \& \[
0
\]
\[
1
\] \& -

-
- \& - \& -
-
- \& -
-
- \& 08 \& - \& $$
\begin{array}{|ll}
\hline 0= & \text { swivel head } \\
1= & \text { tilting table } \\
0= & \begin{array}{l}
\text { incremental dimensions } \\
\text { (for swivel head) }
\end{array} \\
1= & \begin{array}{l}
\text { absolute dimensions, referenced to } \\
\text { the machine datum (for tilting table) }
\end{array} \\
-99 & \begin{array}{l}
\text { g99.9999 to }+99 \\
0999.9999
\end{array} \\
0= & \text { swivelling axis }
\end{array}
$$ \& 0

0

\hline 2. Parameter block \& $$
\begin{aligned}
& 7520 \\
& 7521 \\
& 7522
\end{aligned}
$$ \& \& - \& - \& - \& - \& \[

$$
\begin{aligned}
& 08 \\
& 08 \\
& 08
\end{aligned}
$$
\] \& $\stackrel{+}{*}$ \& 0 to 63

0 to 3

-99999.9999 to +99999.9999 \& $$
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

\hline 3. Parameter block \& $$
\begin{aligned}
& 7530 \\
& 7531 \\
& 7532
\end{aligned}
$$ \& \& - \& - \& - \& - \& \[

$$
\begin{array}{|l}
08 \\
08 \\
08 \\
\hline
\end{array}
$$
\] \& - \& 0 to 63

0 to 3

-99999.9999 to +99999.9999 \& $$
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

\hline 4. Parameter block \& $$
\begin{aligned}
& \hline 7540 \\
& 7541 \\
& 7542
\end{aligned}
$$ \& \& - \& - \& - \& - \& \[

$$
\begin{aligned}
& \hline 08 \\
& 08 \\
& 08 \\
& \hline
\end{aligned}
$$
\] \& - \& 0 to 63

0 to 3

-99999.9999 to +99999.9999 \& $$
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

\hline
\end{tabular}

Function	MP		A	B	C	D	E	F	Input	AE-6 Entry Value
	No.	Bit								
5. Parameter block	7550		-	-	-	-	08	-	0 to 63	0
	7551		-	-	-	-	08	-	0 to 3	0
	7552		-	-	-	-	08	-	-99 999.9999 to + 99999.9999	0
6. Parameter block	7560		-	-	-	-	08	-	0 to 63	0
	7561		-	-	-	-	08	-	0 to 3	0
	7562		-	-	-	-	08	-	-99 999.9999 to + 99999.9999	0
7. Parameter block	7570		-	-	-	-	08	-	0 to 63	0
	7571		-	-	-	-	08	-	0 to 3	0
	7572		-	-	-	-	08	-	-99 999.9999 to + 99999.9999	0
8. Parameter block	7580		-	-	-	-	08	-	0 to 63	0
	7581		-	-	-	-	08	-	0 to 3	0
	7582		-	-	-	-	08	-	-99 999.9999 to + 99999.9999	0
9. Parameter block	7590		-	-	-	-	08	-	0 to 63	0
	7591		-	-	-	-	08	-	0 to 3	0
	7592		-	-	-	-	08	-	-99 999.9999 to + 99999.9999	0

08.05.95

Hardware

Function	No.	Bit	A	B	C	D	E	F	Input	AE-6 Entry Value
Feed rate and spindle override	7620									2
Feed rate override if the rapid traverse key is pressed in the operating mode "Program Run"		0	-	-	-	-	-	-	$+0=$ override inactive $+1=$ override active	
Override in 2% or 1% increments (if inactive, always 1\%)		1	-	-	104	104	-	-	$\begin{aligned} & +0=2 \% \text { steps } \\ & +2=1 \% \text { steps } \end{aligned}$	
Feed rate override if the rapid traverse key and external direction keys are pressed in the "Manual" mode		2	-	-	-	-	-	-	$+0=$ override inactive $+4=$ override active	
Override in 0.01% increments with nonlinear characteristic curve		3	-	-	02	02	-	-	$\begin{aligned} & +0=\text { override inactive } \\ & +8=0.01 \% \text { steps } \end{aligned}$	
Feed rate and spindle override Feed rate override function if the rapid traverse key is pressed in the operating mode "Program Run"	7620	0	-	-	-	-	-	-	$+0=$ feed override inactive $+1=$ feed override active	\%1101
Feed override function - in the MANUAL mode, if the rapid traverse key and external direction keys are pressed - in the HANDWHEEL mode if the rapid traverse key and the direction key on the handwheel are pressed.		2							$+0=$ feed override inactive $+4=$ feed override active	
Override, characteristic curve		3							$+0=$ feed and spindle override in 1% steps $+8=$ feed and spindle override in 0.01% steps and non-linear characteristic line	

Function	$\text { No. }{ }^{\text {MP }} \text { Bit }$	A	B	c	D	E	F	Input	AE-6 Entry Value
Configuration of the handwheel Configuration of the handwheel	$\begin{aligned} & 7640^{*} \\ & 7640^{*} \end{aligned}$		- - - - - - - - -	$\begin{gathered} 103 \\ 03 \\ 03 \\ 03 \end{gathered}$	$\begin{array}{\|c} 103 \\ 03 \\ 03 \\ 03 \end{array}$				0 0
Entry of interpolation factor	7641	-	-	-	-	-	-	$0=$ at keyboard $1=$ via PLC module 9036	0

[^13]1) axis switchover with handwhee
2) axis switchover with handwheel or keyboard
3) If the HR 410 does not receive any initializing parameters (MP 7645.x) it automatically switches to HR 332 mode (MP $7640=4$).

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Function \& No. \& Bit \& A \& B \& C \& D \& E \& F \& Input \& AE-6 Entry Value \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Initalizing parameters for the handwheel \\
Allocation of the 3rd handwheel via axis selector switch (MP7640 = 5)
\end{tabular}} \& \multirow[t]{4}{*}{7645.0} \& \multirow[t]{2}{*}{0} \& \multirow[t]{4}{*}{-} \& \multirow[b]{4}{*}{-} \& \multirow[t]{4}{*}{-

-} \& \multirow[t]{4}{*}{-

-} \& \multirow[t]{4}{*}{-} \& \multirow[t]{4}{*}{-} \& \multirow[t]{2}{*}{$$
\begin{aligned}
&+0= \text { position } 1 \text { (left stop) } \rightarrow \mathrm{Z} \text { axis } \\
& \text { position } 2 \rightarrow \mathrm{IV} \text {. axis } \\
& \text { position } 3 \rightarrow \mathrm{~V} \text {. axis } \\
& \\
&+1= \text { position } 1 \rightarrow \mathrm{X} \text { axis } \\
& \text { position } 2 \rightarrow \mathrm{Y} \text { axis } \\
& \text { position } 3 \rightarrow \mathrm{Z} \text { axis } \\
& \text { position } 4 \rightarrow \mathrm{~V} \text {. axis } \\
& \text { position } 5 \rightarrow \mathrm{~V} \text {. axis }
\end{aligned}
$$} \& \multirow[t]{4}{*}{0}

\hline \& \& \& \& \& \& \& \& \& \&

\hline \& \& \multirow[t]{2}{*}{1

$$
2-7
$$} \& \& \& \& \& \& \& \[

$$
\begin{aligned}
+2= & \text { position } 3 \rightarrow Z \text { axis } \\
& \text { position } 4 \rightarrow I V \text {. axis } \\
& \text { position } 5 \rightarrow \mathrm{~V} \text {. axis }
\end{aligned}
$$
\] \&

\hline Evaluation of keys and LEDs on HR332 \& \& \& \& \& \& \& \& \& \multirow[t]{2}{*}{HR 332

$$
\begin{aligned}
0= & \text { keys X, Y, Z, IV and their LEDs are } \\
& \text { evaluated by NC } \\
& \text { remaining keys: PLC I } 164 \text { to I } 170 \\
& \text { remaining LEDs: PLC O } 100 \text { to O } 106 \\
1= & \text { keys: PLC I } 160 \text { to I } 171 \\
& \text { LEDs: PLC O } 96 \text { to O } 107
\end{aligned}
$$} \&

\hline | (MP7640 = 4) |
| :--- |
| HR 410 in HR 332 mode (MP $7640=4)$ | \& \multirow{2}{*}{7645.0} \& \& \& \multirow[t]{2}{*}{-

-} \& \multirow[t]{2}{*}{| - |
| :---: |
| |
| |
| |
| |
| |
| |} \& \multirow[t]{2}{*}{-

-} \& \multirow{2}{*}{-} \& \multirow{2}{*}{-} \& \& \multirow{2}{*}{0}

\hline \& \& \& \& \& \& \& \& \& $$
\begin{array}{|ll}
0= & \text { keys X, Y, Z, IV and their LEDs are } \\
& \text { evaluated by NC } \\
& \text { remaining keys: PLC I } 164 \text { to I } 171 \\
& \text { remaining LEDs: PLC O } 100 \text { to O } 107 \\
1= & \text { keys: PLC I } 160 \text { to | } 171
\end{array}
$$ \&

\hline HR 410 in HR 410 mode ($\mathbf{M P} \mathbf{7 6 4 0}=\mathbf{6}$) \& \multicolumn{2}{|l|}{7645.0} \& - \& - \& - \& - \& - \& - \& $$
\begin{array}{|ll}
0= & \text { keys } X, Y, \text { Z, IV, V, actl. value transfer and } \\
& \text { their LEDs are evaluated by NC } \\
& \text { remaining keys: PLC I } 168 \text { to I } 175 \\
& \text { remaining LEDs: PLC O } 100 \text { to O } 111 \\
1= & \text { keys: PLC I 168 to I } 175 \\
& \text { LEDs: PLC O } 96 \text { to O } 111 \\
\hline
\end{array}
$$ \& 0

\hline
\end{tabular}

Function	No.		A	B	C	D	E	F	Input	AE-6 Entry Value
Allocation of the 3rd handwheel via machine parameter (MP7640 = 5)	7645.1		-	-	-	-	-	-	$\begin{aligned} \hline 0= & \text { simulation of the first position of the } \\ & \text { selector switch } \\ & M P 7645.0=0 \rightarrow Z \text { axis } \\ & M P 7645.0=1 \rightarrow X \text { axis } \\ +1= & X \text { axis } \\ +2= & Y \text { axis } \\ +4= & Z \text { axis } \\ +8= & I V . \text { axis } \\ +16= & V . \text { axis } \end{aligned}$	0
Select axis selection process (MP7640 = 5)	7645.2		-	-	-	-	-	-	$\begin{array}{\|ll} \hline 0= & \text { axis selection via axis selector switch } \\ & \text { according to MP } 7645.0 \\ 1= & \text { axis selection according to MP } 7645.1 \end{array}$	
reserved	7645.3 7645.7		-	-	-	-	-	-	no function	0

Function	MP		A	B	C	D	E	F	Input	AE-6 Entry Value
	No.	Bit								
Handwheel, counting direction	7650		-	-	-	-	-	-	$\begin{array}{ll} 0= & \text { positive counting direction } \\ 1= & \text { negative counting direction } \\ \hline \end{array}$	0
Hysteresis for electronic handwheel	7660		-	-	-	-	-	-	0 to 65535 [increments]	10
Handwheel, minimum interpolation factor	7670		-	-	-	-	-	104	0 to 10	0
Handwheel interpolation factor slow (HR 130/3xx/410) medium (HR 410 only) fast (HR 410 only)	$\begin{aligned} & 7670.0 \\ & 7670.1 \\ & 7670.2 \end{aligned}$		-	-	-	-	-	$\begin{aligned} & 04 \\ & 04 \\ & 04 \end{aligned}$	0 to 10	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$
HR 410: \%-factor of manual feed slow (HR 410 only) medium (HR 410 only) fast (HR 410 only)	$\begin{aligned} & 7671.0 \\ & 7671.1 \\ & 7671.2 \end{aligned}$		-	-	-	-	-	$\begin{array}{\|l\|} \hline 04 \\ 04 \\ 04 \end{array}$	0 to 100 [\%]	$\begin{gathered} 50 \\ 75 \\ 100 \end{gathered}$

[^0]: - After editing, the PLC program must be compiled (translated) anew. Use the soft key >Compile< or switch off the control!

[^1]: * The sensor line is connected to the corresponding supply lines in the unit.

[^2]: * +24 V must always be connected, even the outputs are not used.

[^3]: B-Analog pin 15*
 $0.2 \mathrm{~V} / \mathrm{DIV}$

 * If the colour signals are measured directly at the output of the logic unit, the amplitudes are approx. twice as large.

[^4]: $\mathrm{t}=4 \mathrm{~ms}$ (TNC 415)
 $\mathrm{t}=12 \mathrm{~ms}$ (TNC 407)

[^5]: The RS 232C data interface has different pin assignments at the logic unit X21 and at the RS 232C adaptor block.

[^6]: * The tool file TOOL.T is automatically generated by the TNC and selected for machining a workpiece. This file cannot be edited, read out or downloaded.

[^7]: ${ }^{1)}$ X6 may only be used for a machine axes, if no regulated spindle (GS) is required.

[^8]: * accessible via code number 123

[^9]: * accessible via code number 123

[^10]: * accessible via code number 123

[^11]: * accessible via code number 123

[^12]: * accessible via code number 123

[^13]: * accessible via code number 123

